These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 622723)
21. Polyalkoxybenzenes from plants. 5. Parsley seed extract in synthesis of azapodophyllotoxins featuring strong tubulin destabilizing activity in the sea urchin embryo and cell culture assays. Semenova MN; Kiselyov AS; Tsyganov DV; Konyushkin LD; Firgang SI; Semenov RV; Malyshev OR; Raihstat MM; Fuchs F; Stielow A; Lantow M; Philchenkov AA; Zavelevich MP; Zefirov NS; Kuznetsov SA; Semenov VV J Med Chem; 2011 Oct; 54(20):7138-49. PubMed ID: 21916509 [TBL] [Abstract][Full Text] [Related]
22. Nuclear and cytoplasmic changes in early development of lithium treated sea urchin embryos. Immers J Acta Embryol Exp (Palermo); 1973; 2():205-21. PubMed ID: 4127773 [No Abstract] [Full Text] [Related]
23. Sea Urchin Embryo Model As a Reliable in Vivo Phenotypic Screen to Characterize Selective Antimitotic Molecules. Comparative evaluation of Combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as Tubulin-Binding Agents. Semenova MN; Demchuk DV; Tsyganov DV; Chernysheva NB; Samet AV; Silyanova EA; Kislyi VP; Maksimenko AS; Varakutin AE; Konyushkin LD; Raihstat MM; Kiselyov AS; Semenov VV ACS Comb Sci; 2018 Dec; 20(12):700-721. PubMed ID: 30452225 [TBL] [Abstract][Full Text] [Related]
24. Actinomycin D--disruption of the mitotic gradient in the cleavage stages of the sea urchin embryo. Parisi E; Filosa S; Monroy A Dev Biol; 1979 Sep; 72(1):167-74. PubMed ID: 510776 [No Abstract] [Full Text] [Related]
25. [Characteristic reaction of early sea urchin embryos to cytostatic analogs of transmitter substances]. Buznikov GA; Zvezdina ND; Rogac L; Rakic L; Iurovskaia MA Ontogenez; 1987; 18(5):507-12. PubMed ID: 2827084 [TBL] [Abstract][Full Text] [Related]
27. Sensitivity of sea urchin embryos to cytotoxic neuropharmacological drugs, the correlations between activity and lipophility of indole and benzole derivatives. Landau MA; Buzniklov GA; Kabankin AS; Teplitz NA; Chernilovskaya PE Comp Biochem Physiol C Comp Pharmacol; 1981; 69(2):359-66. PubMed ID: 6116577 [No Abstract] [Full Text] [Related]
28. Cytotoxic limonoids and tetranortriterpenoids from Melia azedarach. Itokawa H; Qiao ZS; Hirobe C; Takeya K Chem Pharm Bull (Tokyo); 1995 Jul; 43(7):1171-5. PubMed ID: 7586061 [TBL] [Abstract][Full Text] [Related]
29. Exiguamide, a new spirocyclic sesquiterpene from the marine sponge Geodia exigua that inhibits cell fate specification during sea urchin embryogenesis. Uy MM; Ohta S; Yanai M; Ohta E; Hirata T; Ikegami S Bioorg Med Chem Lett; 2002 Nov; 12(21):3037-9. PubMed ID: 12372496 [TBL] [Abstract][Full Text] [Related]
30. The effects of aphidicolin, an inhibitor of DNA replication, on sea urchin development. Brachet J; de Petrocellis B Exp Cell Res; 1981 Sep; 135(1):179-89. PubMed ID: 6793376 [No Abstract] [Full Text] [Related]
31. On the regulation of O2 consumption in sea urchin embryos in the presence of actinomycin D. Bartolucci S; De Vincentiis M; Lancieri M Acta Embryol Exp (Palermo); 1973; 1():105-13. PubMed ID: 4750186 [No Abstract] [Full Text] [Related]
33. Morphogenesis of exogut isolated from vegetalised embryo of sea urchin. Kamata Y; Endo K; Nozaki H; Fujiwara A; Yasumasu I Zygote; 2000; 8 Suppl 1():S84. PubMed ID: 11191335 [No Abstract] [Full Text] [Related]
34. A cytotoxic principle of Tamarindus indica, di-n-butyl malate and the structure-activity relationship of its analogues. Kobayashi A; Adenan MI; Kajiyama S; Kanzaki H; Kawazu K Z Naturforsch C J Biosci; 1996; 51(3-4):233-42. PubMed ID: 8639230 [TBL] [Abstract][Full Text] [Related]
35. Ribosomes and polyribosomes in sea urchin development, particularly in embryos undergoing animalization or vegetalization. Runnström J; Nuzzolo C; Citro G Exp Cell Res; 1972 May; 72(1):252-6. PubMed ID: 5025402 [No Abstract] [Full Text] [Related]
36. Appearance of new glycoproteins in methoxychlor-exposed sea urchin gastrulae. Mwatibo JM; Green JD Bull Environ Contam Toxicol; 1998 May; 60(5):791-6. PubMed ID: 9595197 [No Abstract] [Full Text] [Related]
37. Estradiol disrupts sea urchin embryogenesis differently from methoxychlor. Mwatibo JM; Green JD Bull Environ Contam Toxicol; 1998 Nov; 61(5):577-82. PubMed ID: 9841716 [No Abstract] [Full Text] [Related]
38. [Effect of cyclic nucleotides on the sensitivity of early sea urchin embryos to cytotoxic neuropharmacological preparations]. Shmukler IuB; Buznikov GA; Grigor'ev NG; Mal'chenko LA Biull Eksp Biol Med; 1984 Mar; 97(3):354-5. PubMed ID: 6322883 [TBL] [Abstract][Full Text] [Related]
39. cis-Restricted 3-aminopyrazole analogues of combretastatins: synthesis from plant polyalkoxybenzenes and biological evaluation in the cytotoxicity and phenotypic sea urchin embryo assays. Tsyganov DV; Konyushkin LD; Karmanova IB; Firgang SI; Strelenko YA; Semenova MN; Kiselyov AS; Semenov VV J Nat Prod; 2013 Aug; 76(8):1485-91. PubMed ID: 23924236 [TBL] [Abstract][Full Text] [Related]
40. Mesenchymal cell fusion in the sea urchin embryo. Hodor PG; Ettensohn CA Methods Mol Biol; 2008; 475():315-34. PubMed ID: 18979252 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]