These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 6227614)
1. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of Mg2+. Gómez-Puyou A; Ayala G; Muller U; Tuena de Gómez-Puyou M J Biol Chem; 1983 Nov; 258(22):13673-9. PubMed ID: 6227614 [TBL] [Abstract][Full Text] [Related]
2. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D; Boyer PD Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834 [TBL] [Abstract][Full Text] [Related]
3. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the Pi-ATP exchange and hydrolytic reactions in F0-F1 reconstituted liposomes. Dreyfus G J Biol Chem; 1985 Oct; 260(22):12112-7. PubMed ID: 2864337 [TBL] [Abstract][Full Text] [Related]
5. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related]
6. Effect of dimethylsulfoxide on ATP synthesis by mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):483-7. PubMed ID: 6238952 [TBL] [Abstract][Full Text] [Related]
7. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
8. Kinetic mechanism of ATP synthesis catalyzed by mitochondrial Fo x F1-ATPase. Galkin MA; Syroeshkin AV Biochemistry (Mosc); 1999 Oct; 64(10):1176-85. PubMed ID: 10561566 [TBL] [Abstract][Full Text] [Related]
9. [Presteady-state kinetics of ATP hydrolysis by chloroplast CF1-ATPASE]. Mal'ian AN; Vitseva OI Biokhimiia; 1983 May; 48(5):718-24. PubMed ID: 6223667 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of adenylyl imidodiphosphate- and ADP-binding sites insoluble and particulate mitochondrial ATPase. Studies with methanol. Flores GO; Acosta A; Puyou AG Biochim Biophys Acta; 1982 Mar; 679(3):466-73. PubMed ID: 6461356 [TBL] [Abstract][Full Text] [Related]
11. Studies of the kinetics of the isolated mitochondrial ATPase using dinitrophenol as a probe. Harris DA; Dall-Larsen T; Klungsøyr L Biochim Biophys Acta; 1981 Apr; 635(2):412-8. PubMed ID: 6453612 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the synthesis and hydrolysis of ATP by mitochondrial ATPase. Role of the natural ATPase inhibitor protein. Tuena de Gómez-Puyou MT; Muller U; Dreyfus G; Ayala G; Gómez-Puyou A J Biol Chem; 1983 Nov; 258(22):13680-4. PubMed ID: 6227615 [TBL] [Abstract][Full Text] [Related]
13. Oxidative phosphorylation and the Pi-ATP exchange reaction of submitochondrial particles under the influence of organic solvents. Tuena de Gómez-Puyou M; Ayala G; Darszon A; Gómez-Puyou A J Biol Chem; 1984 Aug; 259(15):9472-8. PubMed ID: 6746656 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition. Bulygin VV; Vinogradov AD Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147 [TBL] [Abstract][Full Text] [Related]
15. Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4-. García JJ; Tuena de Gómez-Puyou M; Gómez-Puyou A J Bioenerg Biomembr; 1995 Feb; 27(1):127-36. PubMed ID: 7629044 [TBL] [Abstract][Full Text] [Related]
16. Changes in the adenine nucleotide content of beef-heart mitochondrial F1 ATPase during ATP synthesis in dimethyl sulfoxide. Beharry S; Bragg PD Biochem Biophys Res Commun; 1992 Jan; 182(2):697-702. PubMed ID: 1531174 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of the formation of enzyme-bound ATP from medium inorganic phosphate by mitochondrial F1 adenosinetriphosphatase in the presence of dimethyl sulfoxide. Kandpal RP; Stempel KE; Boyer PD Biochemistry; 1987 Mar; 26(6):1512-7. PubMed ID: 2885026 [TBL] [Abstract][Full Text] [Related]
18. Thermal inactivation of electron-transport functions and F0F1-ATPase activities. Tomita M; Knox BE; Tsong TY Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470 [TBL] [Abstract][Full Text] [Related]
19. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite. Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171 [TBL] [Abstract][Full Text] [Related]
20. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites. Ye JJ; Du J; Lin ZH Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]