These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump. de Meis L J Biol Chem; 1976 Apr; 251(7):2055-62. PubMed ID: 5437 [TBL] [Abstract][Full Text] [Related]
3. Sidedness of K+ activation of calcium transport in the reconstituted sarcoplasmic reticulum calcium pump. Shigekawa M; Wakabayashi S J Biol Chem; 1985 Sep; 260(21):11679-87. PubMed ID: 2931428 [TBL] [Abstract][Full Text] [Related]
4. Properties of a reconstituted calcium pump. Knowles AF; Racker E J Biol Chem; 1975 May; 250(9):3538-44. PubMed ID: 235551 [TBL] [Abstract][Full Text] [Related]
5. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. Berman MC; McIntosh DB; Kench JE J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142 [TBL] [Abstract][Full Text] [Related]
6. Effect of the purified (Mg2+ + Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles. Jilka RL; Martonosi AN; Tillack TW J Biol Chem; 1975 Sep; 250(18):7511-24. PubMed ID: 126238 [TBL] [Abstract][Full Text] [Related]
7. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Fujimori T; Jencks WP J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527 [TBL] [Abstract][Full Text] [Related]
8. Mode of action of diethyl ether on ATP-dependent Ca2+ transport by sarcoplasmic reticulum vesicles. Salama G; Scarpa A Biochem Pharmacol; 1983 Nov; 32(22):3465-77. PubMed ID: 6316982 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C; Xu A; Narayanan N Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909 [TBL] [Abstract][Full Text] [Related]
10. ATP reversible Pi exchange and membrane phosphorylation in sarcoplasmic reticulum vesicles: activation by silver in the absence of a Ca2+ concentration gradient. de Meis L; Sorenson MM Biochemistry; 1975 Jun; 14(12):2739-44. PubMed ID: 125101 [TBL] [Abstract][Full Text] [Related]
11. Clotrimazole, an antimycotic drug, inhibits the sarcoplasmic reticulum calcium pump and contractile function in heart muscle. Snajdrova L; Xu A; Narayanan N J Biol Chem; 1998 Oct; 273(43):28032-9. PubMed ID: 9774419 [TBL] [Abstract][Full Text] [Related]
12. Magnesium permeability of sarcoplasmic reticulum. Mg2+ is not countertransported during ATP-dependent Ca2+ uptake by sarcoplasmic reticulum. Salama G; Scarpa A J Biol Chem; 1985 Sep; 260(21):11697-705. PubMed ID: 3930482 [TBL] [Abstract][Full Text] [Related]
13. The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. Sumbilla C; Lewis D; Hammerschmidt T; Inesi G J Biol Chem; 2002 Apr; 277(16):13900-6. PubMed ID: 11844792 [TBL] [Abstract][Full Text] [Related]
14. Transmembrane gradient and ligand-induced mechanisms of adenosine 5'-triphosphate synthesis by sarcoplasmic reticulum adenosinetriphosphatase. Fernandez-Belda F; Inesi G Biochemistry; 1986 Dec; 25(24):8083-9. PubMed ID: 2948567 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory and stimulatory effects of fluoride on the calcium pump of cardiac sarcoplasmic reticulum. Narayanan N; Su N; Bedard P Biochim Biophys Acta; 1991 Nov; 1070(1):83-91. PubMed ID: 1836355 [TBL] [Abstract][Full Text] [Related]
16. Ca2+ translocation and catalytic activity of the sarcoplasmic reticulum ATPase. Modulation by ATP, Ca2+, and Pi. Galina A; de Meis L J Biol Chem; 1991 Sep; 266(27):17978-82. PubMed ID: 1833389 [TBL] [Abstract][Full Text] [Related]
17. Steady state kinetics of ATP synthesis and hydrolysis coupled calcium transport catalyzed by the reconstituted sarcoplasmic reticulum ATPase. Fagan MH; Dewey TG J Biol Chem; 1985 May; 260(10):6147-52. PubMed ID: 3158649 [TBL] [Abstract][Full Text] [Related]
18. Reversal of the sarcoplasmic reticulum ATPase cycle by substituting various cations for magnesium. Phosphorylation and ATP synthesis when Ca2+ replaces Mg2+. Mintz E; Lacapère JJ; Guillain F J Biol Chem; 1990 Nov; 265(31):18762-8. PubMed ID: 2146262 [TBL] [Abstract][Full Text] [Related]
19. Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum: potential role of the 53-kilodalton glycoprotein. Leonards KS; Kutchai H Biochemistry; 1985 Aug; 24(18):4876-84. PubMed ID: 2934086 [TBL] [Abstract][Full Text] [Related]
20. Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+]. Berman MC Biochim Biophys Acta; 1999 Apr; 1418(1):48-60. PubMed ID: 10209210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]