BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6229056)

  • 21. Secondary-site binding of Glu-plasmin, Lys-plasmin and miniplasmin to fibrin.
    Suenson E; Thorsen S
    Biochem J; 1981 Sep; 197(3):619-28. PubMed ID: 6459779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Glu-plasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK.
    Liu JN; Gurewich V
    Biochemistry; 1992 Jul; 31(27):6311-7. PubMed ID: 1385727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of the activation of plasminogen by natural and recombinant tissue-type plasminogen activator.
    Zamarron C; Lijnen HR; Collen D
    J Biol Chem; 1984 Feb; 259(4):2080-3. PubMed ID: 6538196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasminogen activation by tissue activator is accelerated in the presence of fibrin(ogen) cyanogen bromide fragment FCB-2.
    Nieuwenhuizen W; Verheijen JH; Vermond A; Chang GT
    Biochim Biophys Acta; 1983 Feb; 755(3):531-3. PubMed ID: 6681716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of Val442-plasminogen (mini-plasminogen) by urokinase, streptokinase and tissue plasminogen activator.
    Takada A; Takada Y; Sugawara Y
    Thromb Res; 1988 Jan; 49(2):253-63. PubMed ID: 3129817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the kinetics of plasminogen activation by tissue plasminogen activator.
    Rånby M
    Biochim Biophys Acta; 1982 Jun; 704(3):461-9. PubMed ID: 6214279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic analyses of the activation of Glu-plasminogen by urokinase in the presence of fibrin, fibrinogen or its degradation products.
    Watahiki Y; Takada Y; Takada A
    Thromb Res; 1987 Apr; 46(1):9-18. PubMed ID: 3590117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stachybotrydial selectively enhances fibrin binding and activation of Glu-plasminogen.
    Sasaoka M; Wada Y; Hasumi K
    J Antibiot (Tokyo); 2007 Nov; 60(11):674-81. PubMed ID: 18057696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of fibrin binding and activation of plasminogen by staplabin through induction of a conformational change in plasminogen.
    Takayasu R; Hasumi K; Shinohara C; Endo A
    FEBS Lett; 1997 Nov; 418(1-2):58-62. PubMed ID: 9414095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of nonproteolytic active site formation in plasminogen.
    Gladysheva IP; Sazonova IY; Houng A; Hedstrom L; Reed GL
    Biochemistry; 2007 Jul; 46(30):8879-87. PubMed ID: 17616171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibronectin decreases the stimulatory effect of fibrin and fibrinogen fragment FCB-2 on plasmin formation by tissue plasminogen activator.
    Beckmann R; Geiger M; de Vries C; Pannekoek H; Binder BR
    J Biol Chem; 1991 Feb; 266(4):2227-32. PubMed ID: 1824940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The activation of Glu- and Lys-plasminogens by streptokinase: effects of fibrin, fibrinogen and their degradation products.
    Takada A; Takada Y; Sugawara Y
    Thromb Res; 1985 Feb; 37(3):465-75. PubMed ID: 3992529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator.
    Suenson E; Petersen LC
    Biochim Biophys Acta; 1986 Apr; 870(3):510-9. PubMed ID: 2938632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis.
    Suenson E; Lützen O; Thorsen S
    Eur J Biochem; 1984 May; 140(3):513-22. PubMed ID: 6233145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beta(Leu121-Lys122) segment of fibrinogen is in a region essential for plasminogen binding by fibrin fragment E.
    Váradi A; Patthy L
    Biochemistry; 1984 Apr; 23(9):2108-12. PubMed ID: 6722138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Binding of Glu-plasminogen by fibrinogen and byproducts of its proteolysis].
    Grinenko TV; Tret'iachenko VG; Skomorovskaia EV; Kudinov SA
    Biokhimiia; 1989 Feb; 54(2):213-20. PubMed ID: 2525932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of stromelysin 1 (MMP-3), matrilysin (MMP-7), and membrane type 1 matrix metalloproteinase (MT1-MMP) derived fibrin(ogen) fragments D-dimer and D-like monomer: NH2-terminal sequences of late-stage digest fragments.
    Bini A; Wu D; Schnuer J; Kudryk BJ
    Biochemistry; 1999 Oct; 38(42):13928-36. PubMed ID: 10529239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Location of plasminogen-binding sites in human fibrin(ogen).
    Váradi A; Patthy L
    Biochemistry; 1983 May; 22(10):2440-6. PubMed ID: 6222763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic studies on novel plasminogen activators. Demonstration of fibrin enhancement for hybrid enzymes comprising the A-chain of plasmin (Lys-78) and B-chain of tissue-type plasminogen activator (Ile-276) or urokinase (Ile-159).
    Fears R; Dodd I; Ferres H; Robinson JH
    Biochem J; 1990 Mar; 266(3):693-6. PubMed ID: 2139324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibrinolysis mediated by tissue plasminogen activator. Disclosure of a kinetic transition.
    Norrman B; Wallén P; Rånby M
    Eur J Biochem; 1985 May; 149(1):193-200. PubMed ID: 3158522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.