BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6229535)

  • 1. Interdependence of H+, Ca2+, and Pi (or vanadate) sites in sarcoplasmic reticulum ATPase.
    Inesi G; Lewis D; Murphy AJ
    J Biol Chem; 1984 Jan; 259(2):996-1003. PubMed ID: 6229535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of magnesium and inorganic phosphate with calcium-deprived sarcoplasmic reticulum adenosinetriphosphatase as reflected by organic solvent induced perturbation.
    Champeil P; Guillain F; Vénien C; Gingold MP
    Biochemistry; 1985 Jan; 24(1):69-81. PubMed ID: 3158341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence.
    Suko J; Plank B; Preis P; Kolassa N; Hellmann G; Conca W
    Eur J Biochem; 1981 Oct; 119(2):225-36. PubMed ID: 6458492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropic drive in the sarcoplasmic reticulum ATPase interaction with Mg2+ and Pi.
    Schwarz FP; Inesi G
    Biophys J; 1997 Oct; 73(4):2179-82. PubMed ID: 9336214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcoplasmic reticulum ATPase phosphorylation from inorganic phosphate in the absence of a calcium gradient. Steady state and kinetic fluorescence studies.
    Lacapère JJ; Gingold MP; Champeil P; Guillain F
    J Biol Chem; 1981 Mar; 256(5):2302-6. PubMed ID: 6450766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactions of the sarcoplasmic reticulum calcium adenosinetriphosphatase with adenosine 5'-triphosphate and Ca2+ that are not satisfactorily described by an E1-E2 model.
    Stahl N; Jencks WP
    Biochemistry; 1987 Dec; 26(24):7654-67. PubMed ID: 2962640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC; McIntosh DB; Kench JE
    J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorometric titration of the sarcoplasmic reticulum adenosinetriphosphatase calcium sites in the presence of vanadate.
    Fernández Belda F; García de Ancos J; Inesi G
    Biochim Biophys Acta; 1986 Jan; 854(2):257-64. PubMed ID: 2935192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Mg2+ and Ca2+ in the simultaneous binding of vanadate and ATP at the phosphorylation site of sarcoplasmic reticulum Ca2+-ATPase.
    Andersen JP; Møller JV
    Biochim Biophys Acta; 1985 Apr; 815(1):9-15. PubMed ID: 3157403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of phosphoenzyme formation from phosphate and sarcoplasmic reticulum Ca(2+)-ATPase by vanadate binding to high- or low-affinity site on the enzyme.
    Yamasaki K; Yamamoto T
    J Biochem; 1992 Nov; 112(5):658-64. PubMed ID: 1478926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient state kinetic effects of calcium ion on sarcoplasmic reticulum adenosine triphosphatase.
    Froehlich JP; Taylor EW
    J Biol Chem; 1976 Apr; 251(8):2307-15. PubMed ID: 131125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent.
    Myung J; Jencks WP
    Biochemistry; 1994 Jul; 33(29):8775-85. PubMed ID: 8038168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of urea on the partial reactions and crystallization pattern of sarcoplasmic reticulum adenosine triphosphatase.
    Jorge-Garcia I; Bigelow DJ; Inesi G; Wade JB
    Arch Biochem Biophys; 1988 Aug; 265(1):82-90. PubMed ID: 2970823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium binding to the H+,K(+)-ATPase. Evidence for a divalent cation site that is occupied during the catalytic cycle.
    Mendlein J; Ditmars ML; Sachs G
    J Biol Chem; 1990 Sep; 265(26):15590-8. PubMed ID: 2168418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ gradient and drugs reveal different binding sites for Pi and Mg2+ in phosphorylation of the sarcoplasmic reticulum ATPase.
    De Meis L; Suzano VA; Caldeira T; Mintz E; Guillain F
    Eur J Biochem; 1991 Aug; 200(1):209-13. PubMed ID: 1831758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vanadate complex of the calcium-transport ATPase of the sarcoplasmic reticulum, its formation and dissociation.
    Medda P; Hasselbach W
    Eur J Biochem; 1983 Dec; 137(1-2):7-14. PubMed ID: 6228425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum.
    Ikemoto N
    J Biol Chem; 1975 Sep; 250(18):7219-24. PubMed ID: 126233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of spin-labeled sarcoplasmic reticulum to the phosphorylation state of the catalytic site in aqueous media and in dimethyl sulfoxide.
    Coan C
    Biochemistry; 1983 Dec; 22(25):5826-36. PubMed ID: 6318804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-irreversible inactivation of the sarcoplasmic reticulum Ca(2+)-ATPase by simultaneous tight binding of magnesium and fluoride to the catalytic site.
    Kubota T; Daiho T; Kanazawa T
    Biochim Biophys Acta; 1993 May; 1163(2):131-43. PubMed ID: 8490045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric studies of ligand-induced modulation of calcium adenosine 5'-triphosphatase from sarcoplasmic reticulum.
    Epstein M; Kuriki Y; Biltonen R; Racker E
    Biochemistry; 1980 Nov; 19(24):5564-8. PubMed ID: 6450611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.