BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6229535)

  • 21. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase.
    Wakabayashi S; Shigekawa M
    J Biol Chem; 1987 Aug; 262(24):11524-31. PubMed ID: 2957367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of potassium and magnesium with the high affinity calcium-binding sites of the sarcoplasmic reticulum calcium-ATPase.
    Moutin MJ; Dupont Y
    J Biol Chem; 1991 Mar; 266(9):5580-6. PubMed ID: 1826001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vanadate inhibition of the Ca-ATPase activity of sarcoplasmic reticulum vesicles.
    Barrabin H; de Meis L
    An Acad Bras Cienc; 1982 Dec; 54(4):743-51. PubMed ID: 6221681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific dicyclohexylcarbodiimide inhibition of the E-P + H2O equilibrium E + Pi reaction and ATP equilibrium Pi exchange in sarcoplasmic reticulum adenosinetriphosphatase.
    Scofano HM; Barrabin H; Lewis D; Inesi G
    Biochemistry; 1985 Feb; 24(4):1025-9. PubMed ID: 3158344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous binding of calcium and vanadate to the Ca2+-ATPase of sarcoplasmic reticulum.
    Markus S; Priel Z; Chipman DM
    Biochim Biophys Acta; 1986 Nov; 874(1):128-35. PubMed ID: 2945595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzyme phosphorylation with inorganic phosphate causes Ca2+ dissociation from sarcoplasmic reticulum adenosinetriphosphatase.
    de Meis L; Inesi G
    Biochemistry; 1985 Feb; 24(4):922-5. PubMed ID: 3158346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reversal of the sarcoplasmic reticulum ATPase cycle by substituting various cations for magnesium. Phosphorylation and ATP synthesis when Ca2+ replaces Mg2+.
    Mintz E; Lacapère JJ; Guillain F
    J Biol Chem; 1990 Nov; 265(31):18762-8. PubMed ID: 2146262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics of the calcium-transporting ATPase.
    Pickart CM; Jencks WP
    J Biol Chem; 1984 Feb; 259(3):1629-43. PubMed ID: 6229538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium gradient-dependent and calcium gradient-independent phosphorylation of sarcoplasmic reticulum by orthophosphate. The role of magnesium.
    Punzengruber C; Prager R; Kolassa N; Winkler F; Suko J
    Eur J Biochem; 1978 Dec; 92(2):349-59. PubMed ID: 33042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sarcoplasmic reticulum adenosinetriphosphatase phosphorylation from inorganic phosphate. Theoretical and experimental reinvestigation.
    Guillain F; Champeil P; Boyer PD
    Biochemistry; 1984 Sep; 23(20):4754-61. PubMed ID: 6238621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinction of the roles of the two high-affinity calcium sites in the functional activities of the Ca2+-ATPase of sarcoplasmic reticulum.
    Scott TL; Shamoo AE
    Eur J Biochem; 1984 Sep; 143(2):427-36. PubMed ID: 6236083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of Ca2+ transport by Ca2+-Mg2+-ATPase pump: analysis of major states and pathways.
    Haynes DH
    Am J Physiol; 1983 Jan; 244(1):G3-12. PubMed ID: 6129804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca2+ binding to sarcoplasmic reticulum ATPase revisited. I. Mechanism of affinity and cooperativity modulation by H+ and Mg2+.
    Forge V; Mintz E; Guillain F
    J Biol Chem; 1993 May; 268(15):10953-60. PubMed ID: 8496159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate.
    Prager R; Punzengruber C; Kolassa N; Winkler F; Suko J
    Eur J Biochem; 1979 Jun; 97(1):239-50. PubMed ID: 157875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme.
    Hanel AM; Jencks WP
    Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum.
    Pick U
    J Biol Chem; 1982 Jun; 257(11):6111-9. PubMed ID: 6210692
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium ATPase of sarcoplasmic reticulum has four binding sites for calcium.
    Jencks WP; Yang T; Peisach D; Myung J
    Biochemistry; 1993 Jul; 32(27):7030-4. PubMed ID: 8334133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+ binding to sarcoplasmic reticulum ATPase phosphorylated by Pi reveals four thapsigargin-sensitive Ca2+ sites in the presence of ADP.
    Vieyra A; Mintz E; Lowe J; Guillain F
    Biochim Biophys Acta; 2004 Dec; 1667(2):103-13. PubMed ID: 15581845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The binding of ATP and Mg2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum follows a random mechanism.
    Reinstein J; Jencks WP
    Biochemistry; 1993 Jul; 32(26):6632-42. PubMed ID: 8329390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interdependence of Ca2+ occlusion sites in the unphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase complex with CrATP.
    Vilsen B; Andersen JP
    J Biol Chem; 1992 Feb; 267(5):3539-50. PubMed ID: 1531342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.