These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6229535)

  • 41. A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin.
    Sagara Y; Wade JB; Inesi G
    J Biol Chem; 1992 Jan; 267(2):1286-92. PubMed ID: 1530936
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of pH on phosphorylation of the Ca2+-ATPase of sarcoplasmic reticulum by inorganic phosphate.
    Khan YM; East JM; Lee AG
    Biochem J; 1997 Feb; 321 ( Pt 3)(Pt 3):671-6. PubMed ID: 9032452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations.
    Mendlein J; Sachs G
    J Biol Chem; 1989 Nov; 264(31):18512-9. PubMed ID: 2553712
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of calcium.
    Carvalho-Alves PC; Scofano HM
    J Biol Chem; 1987 May; 262(14):6610-4. PubMed ID: 2952654
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oligovanadate binding to sarcoplasmic reticulum ATPase. Evidence for substrate analogue behavior.
    Coan C; Scales DJ; Murphy AJ
    J Biol Chem; 1986 Aug; 261(22):10394-403. PubMed ID: 3015927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion.
    Fujimori T; Jencks WP
    J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of calcium and vanadate with fluorescein isothiocyanate labeled Ca2+-ATPase from sarcoplasmic reticulum: kinetics and equilibria.
    Markus S; Priel Z; Chipman DM
    Biochemistry; 1989 Jan; 28(2):793-9. PubMed ID: 2523730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dependence on membrane lipids of the effect of vanadate on calcium and ATP binding to sarcoplasmic reticulum ATPase.
    Medda P; Hasselbach W
    Z Naturforsch C Biosci; 1984; 39(11-12):1137-40. PubMed ID: 6241765
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphorylation of calcium adenosinetriphosphatase by inorganic phosphate: reversible inhibition at high magnesium ion concentrations.
    Loomis CR; Martin DW; McCaslin DR; Tanford C
    Biochemistry; 1982 Jan; 21(1):151-6. PubMed ID: 6460525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct fluorescence measurements of Mg2+ binding to sarcoplasmic reticulum ATPase.
    Guillain F; Gingold MP; Champeil P
    J Biol Chem; 1982 Jul; 257(13):7366-71. PubMed ID: 6211442
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High and low affinity Ca2+ binding to the sarcoplasmic reticulum: use of a high-affinity fluorescent calcium indicator.
    Chiu VC; Haynes DH
    Biophys J; 1977 Apr; 18(1):3-22. PubMed ID: 15667
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+.
    Cantilina T; Sagara Y; Inesi G; Jones LR
    J Biol Chem; 1993 Aug; 268(23):17018-25. PubMed ID: 8349590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ca2+ binding to sarcoplasmic reticulum ATPase revisited. II. Equilibrium and kinetic evidence for a two-route mechanism.
    Forge V; Mintz E; Guillain F
    J Biol Chem; 1993 May; 268(15):10961-8. PubMed ID: 8496160
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium dependence of Pi phosphorylation of sarcoplasmic reticulum Ca2+-ATPase at low water content: water dependence of the E2-->E1 conversion.
    Sodré CL; Scofano HM; Barrabin H
    Biochim Biophys Acta; 1999 Jun; 1419(1):55-63. PubMed ID: 10366670
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.
    Medda P; Fassold E; Hasselbach W
    Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
    Shigekawa M; Finegan JA; Katz AM
    J Biol Chem; 1976 Nov; 251(22):6894-900. PubMed ID: 11210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thapsigargin and dimethyl sulfoxide activate medium P(i)<-->HOH oxygen exchange catalyzed by sarcoplasmic reticulum Ca2+-ATPase.
    Seekoe T; Peall S; McIntosh DB
    J Biol Chem; 2001 Dec; 276(50):46737-44. PubMed ID: 11595736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium and proton dependence of sarcoplasmic reticulum ATPase.
    Inesi G; Hill TL
    Biophys J; 1983 Nov; 44(2):271-80. PubMed ID: 6317076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binding of Ca2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum.
    Petithory JR; Jencks WP
    Biochemistry; 1988 Nov; 27(23):8626-35. PubMed ID: 2975510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study of calcium transients by isotopic tracer, metallochromic indicator, and intrinsic fluorescence in sarcoplasmic reticulum ATPase.
    Fernandez-Belda F; Kurzmack M; Inesi G
    J Biol Chem; 1984 Aug; 259(15):9687-98. PubMed ID: 6235229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.