These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 6229535)
61. Transmembrane gradient and ligand-induced mechanisms of adenosine 5'-triphosphate synthesis by sarcoplasmic reticulum adenosinetriphosphatase. Fernandez-Belda F; Inesi G Biochemistry; 1986 Dec; 25(24):8083-9. PubMed ID: 2948567 [TBL] [Abstract][Full Text] [Related]
62. Fluoride is a slow, tight-binding inhibitor of the calcium ATPase of sarcoplasmic reticulum. Murphy AJ; Coll RJ J Biol Chem; 1992 Mar; 267(8):5229-35. PubMed ID: 1531981 [TBL] [Abstract][Full Text] [Related]
63. Effect of diethyl pyrocarbonate modification on the calcium binding mechanism of the sarcoplasmic reticulum ATPase. Coan C; DiCarlo R J Biol Chem; 1990 Apr; 265(10):5376-84. PubMed ID: 2138607 [TBL] [Abstract][Full Text] [Related]
64. Inactivation and phosphorylation of sarcoplasmic reticulum Ca(2+)-ATPase by Mg.ATP analogues Rh(III)-ATP and Co(III)-ATP. Kuntzweiler TA; Grisham CM Arch Biochem Biophys; 1992 May; 295(1):188-97. PubMed ID: 1533500 [TBL] [Abstract][Full Text] [Related]
65. Calcium dependence during single-cycle catalysis of the sarcoplasmic reticulum ATPase. Davidson GA; Berman MC J Biol Chem; 1988 Aug; 263(24):11786-91. PubMed ID: 2969894 [TBL] [Abstract][Full Text] [Related]
66. Direct demonstration of an acid-labile phosphoenzyme in the cycle of the sarcoplasmic reticulum Ca2(+)-dependent adenosinetriphosphatase. Alonso GL; Takara D; González DA Biochim Biophys Acta; 1990 Nov; 1030(1):172-5. PubMed ID: 2148271 [TBL] [Abstract][Full Text] [Related]
67. Phosphorylation of solubilized sarcoplasmic reticulum by orthophosphate and its thermodynamic characteristics. The dominant role of entropy in the phosphorylation. Kanazawa T J Biol Chem; 1975 Jan; 250(1):113-9. PubMed ID: 237882 [TBL] [Abstract][Full Text] [Related]
68. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum? Smith GA; Vandenberg JI; Freestone NS; Dixon HB Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858 [TBL] [Abstract][Full Text] [Related]
69. Effects of a Ca2+ gradient and water activity on the phosphorylation of Ca(2+)-ATPase by Pi. Caldeira MT; de Meis L FEBS Lett; 1991 Aug; 288(1-2):10-2. PubMed ID: 1831769 [TBL] [Abstract][Full Text] [Related]
70. There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase. Myung J; Jencks WP Biochemistry; 1995 Mar; 34(9):3077-83. PubMed ID: 7893720 [TBL] [Abstract][Full Text] [Related]
71. Phosphorylation of calcium adenosinetriphosphatase by inorganic phosphate: van't Hoff analysis of enthalpy changes. Martin DW; Tanford C Biochemistry; 1981 Aug; 20(16):4597-602. PubMed ID: 6457627 [TBL] [Abstract][Full Text] [Related]
72. Effect of non-solubilizing SDS concentrations on high affinity Ca2+ binding and steady state phosphorylation by inorganic phosphate of the sarcoplasmic reticulum ATPase. Fassold E; Hasselbach W; Küchler B Z Naturforsch C J Biosci; 1989; 44(1-2):139-52. PubMed ID: 2523710 [TBL] [Abstract][Full Text] [Related]
73. Reaction mechanism of calcium-ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates. Yamada S; Ikemoto N J Biol Chem; 1980 Apr; 255(7):3108-19. PubMed ID: 6444634 [TBL] [Abstract][Full Text] [Related]
74. Determination and functional significance of low affinity nucleotide sites of Ca2+ + Mg2+ -dependent ATPase of sarcoplasmic reticulum. Eckert K; Grosse R; Levitsky DO; Kuzmin AV; Smirnov VN; Repke KR Acta Biol Med Ger; 1977; 36(2):K1-10. PubMed ID: 143860 [TBL] [Abstract][Full Text] [Related]
75. Effect of divalent cation bound to the ATPase of sarcoplasmic reticulum. Activation of phosphoenzyme hydrolysis by Mg2+. Shigekawa M; Wakabayashi S; Nakamura H J Biol Chem; 1983 Dec; 258(23):14157-61. PubMed ID: 6227621 [TBL] [Abstract][Full Text] [Related]
76. Dimethyl sulfoxide favours the covalent phosphorylation and not the binding of Pi to sarcoplasmic reticulum ATPase. Mintz E; Forge V; Guillain F Biochim Biophys Acta; 1993 Mar; 1162(1-2):227-9. PubMed ID: 8448189 [TBL] [Abstract][Full Text] [Related]
77. Modification of arginine-198 in sarcoplasmic reticulum Ca2+-ATPase by 1,2-cyclohexanedione causes inhibition of formation of the phosphoenzyme intermediate from inorganic phosphate. Saino T; Daiho T; Kanazawa T J Biol Chem; 1997 Aug; 272(34):21142-50. PubMed ID: 9261119 [TBL] [Abstract][Full Text] [Related]
78. Characterization of medium inorganic phosphate-water exchange catalyzed by sarcoplasmic reticulum vesicles. Ariki M; Boyer PD Biochemistry; 1980 Apr; 19(9):2001-4. PubMed ID: 6445751 [TBL] [Abstract][Full Text] [Related]
79. Changes in Ca2+ affinity related to conformational transitions in the phosphorylated state of soluble monomeric Ca2+-ATPase from sarcoplasmic reticulum. Andersen JP; Lassen K; Møller JV J Biol Chem; 1985 Jan; 260(1):371-80. PubMed ID: 3155517 [TBL] [Abstract][Full Text] [Related]
80. Two states of the nucleotide-binding site of sarcoplasmic reticulum adenosine triphosphatase detected by the calcium-dependent reaction with adenosine 5'-[gamma-imidazolidate]triphosphate and adenosine 5'-[beta-imidazolidate]diphosphate. Gutowski-Eckel Z; Bäumert HG Eur J Biochem; 1993 Dec; 218(3):823-8. PubMed ID: 8281933 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]