BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 6230104)

  • 41. [Effects of acidosis and alkalosis on the sarcoplasmic reticulum of the heart].
    Holguín JA; Sierra M; Ramírez MC
    Arch Inst Cardiol Mex; 1985; 55(3):197-207. PubMed ID: 2932071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium oxalate and calcium phosphate capacities of cardiac sarcoplasmic reticulum.
    Feher JJ; Lipford GB
    Biochim Biophys Acta; 1985 Sep; 818(3):373-85. PubMed ID: 3876113
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced phosphorylation of phospholamban and downregulation of sarco/endoplasmic reticulum Ca2+ ATPase type 2 (SERCA 2) in cardiac sarcoplasmic reticulum from rabbits with heart failure.
    Currie S; Smith GL
    Cardiovasc Res; 1999 Jan; 41(1):135-46. PubMed ID: 10325961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cation transport properties of a synthetic Ca2+-selective peptide ionophore in phospholipid and sarcoplasmic reticulum vesicles.
    Drobnies AE; Deber CM
    Biochim Biophys Acta; 1982 Sep; 691(1):30-6. PubMed ID: 6128028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium handling by sarcoplasmic reticulum of neonatal swine cardiac myocytes.
    Hohl CM; Livingston B; Hensley J; Altschuld RA
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H192-9. PubMed ID: 9249490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dependence of calcium permeability of sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations.
    Katz AM; Repke DI; Dunnett J; Hasselbach W
    J Biol Chem; 1977 Mar; 252(6):1950-6. PubMed ID: 403187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sarcoplasmic reticulum calcium pump: a model for Ca2+ binding and Ca2+-coupled phosphorylation.
    Tanford C; Reynolds JA; Johnson EA
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7094-8. PubMed ID: 2959957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium incorporation by smooth muscle microsomes.
    Godfraind T; Sturbois X; Verbeke N
    Biochim Biophys Acta; 1976 Nov; 455(1):254-68. PubMed ID: 11001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium sequestration by isolated sarcoplasmic reticulum: real-time monitoring using ratiometric dual-emission spectrofluorometry and the fluorescent calcium-binding dye indo-1.
    O'Brien PJ
    Mol Cell Biochem; 1990 May; 94(2):113-9. PubMed ID: 2374546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Competition between oxalate and phosphate during active calcium accumulation by sarcoplasmic vesicles.
    Beil FU; von Chak D; Hasselbach W; Weber HH
    Z Naturforsch C Biosci; 1977; 32(3-4):281-7. PubMed ID: 141806
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Invariance of stoichiometry of the sarcoplasmic reticulum calcium pump at physiological calcium concentrations--a reevaluation.
    Hasselbach W; Migala A
    Z Naturforsch C Biosci; 1985; 40(7-8):571-5. PubMed ID: 2413640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding of calcium by organic anions, determined by perturbation of the equilibrium solubility of [14C]calcium oxalate.
    Geller DA; Ostrow JD; Moore EW; Celic L; Nancollas GH
    Clin Chim Acta; 1989 Jul; 182(3):255-70. PubMed ID: 2766550
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores.
    Favre CJ; Schrenzel J; Jacquet J; Lew DP; Krause KH
    J Biol Chem; 1996 Jun; 271(25):14925-30. PubMed ID: 8662967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. X-537A ionophore-mediated calcium transport and calcium phosphate formation in Pressman cells.
    Eanes ED; Costa JL
    Calcif Tissue Int; 1983; 35(2):250-7. PubMed ID: 6850405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The kinetics of ionophore X-537A-mediated transport of manganese through dipalmitoylphosphatidylcholine vesicles. A 1H-NMR study.
    Degani H; Simon S; McLaughlin AC
    Biochim Biophys Acta; 1981 Aug; 646(2):320-8. PubMed ID: 6895319
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved technique for the measurement of the kinetics of Ca2+ uptake by cells: the coupling of an amplifier with voltage regulator to a Ca2+-selective electrode.
    Flora U; Gennaro R; Romeo D
    Anal Biochem; 1980 Feb; 102(1):77-9. PubMed ID: 7356166
    [No Abstract]   [Full Text] [Related]  

  • 57. Precipitation of calcium oxalate from homogeneous solution by cation release.
    Grzeskowiak R; Turner TA
    Talanta; 1973 Mar; 20(3):351-4. PubMed ID: 18961286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real Time Monitoring of Calcium Oxalate Precipitation Reaction by Using Corrosion Resistant Magnetoelastic Resonance Sensors.
    Sisniega B; Sagasti Sedano A; Gutiérrez J; García-Arribas A
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32423121
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles.
    Sauer M; Haefele T; Graff A; Nardin C; Meier W
    Chem Commun (Camb); 2001 Dec; (23):2452-3. PubMed ID: 12240010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comparative study of methods for precipitating calcium oxalate from homogeneous solution.
    Bashar A; Townshend A
    Talanta; 1966 Aug; 13(8):1123-8. PubMed ID: 18959981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.