These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 6230390)
21. Lethal graft-vs-host disease across major histocompatibility barriers: requirement for leucyl-leucine methyl ester sensitive cytotoxic T cells. Thiele DL; Charley MR; Calomeni JA; Lipsky PE J Immunol; 1987 Jan; 138(1):51-7. PubMed ID: 2946780 [TBL] [Abstract][Full Text] [Related]
22. Role of L3T4+ and Lyt-2+ donor cells in graft-versus-host immune deficiency induced across a class I, class II, or whole H-2 difference. Moser M; Sharrow SO; Shearer GM J Immunol; 1988 Apr; 140(8):2600-8. PubMed ID: 3258615 [TBL] [Abstract][Full Text] [Related]
24. Natural killer activity in (C57BL/6 X DBA/2)F1 hybrids undergoing acute and chronic graft-vs.-host reaction. Pattengale PK; Ramstedt U; Gidlund M; Orn A; Axberg I; Wigzell H Eur J Immunol; 1983 Nov; 13(11):912-9. PubMed ID: 6641788 [TBL] [Abstract][Full Text] [Related]
25. IL-12 stimulates the development of acute graft-versus-host disease in mice that normally would develop chronic, autoimmune graft-versus-host disease. Via CS; Rus V; Gately MK; Finkelman FD J Immunol; 1994 Nov; 153(9):4040-7. PubMed ID: 7930611 [TBL] [Abstract][Full Text] [Related]
26. Graft-vs-host reactions (GVHR) across minor murine histocompatibility barriers. I. Impairment of mitogen responses and suppressor phenomena. Holda JH; Maier T; Claman HN J Immunol; 1985 Mar; 134(3):1397-402. PubMed ID: 3155767 [TBL] [Abstract][Full Text] [Related]
27. Abrogation of the lethal graft-vs.-host reaction developed to non-H-2 antigens: involvement of T suppressor cells distinct from veto cells. Halle-Pannenko O; Pritchard LL; Bruley-Rosset M Eur J Immunol; 1987 Dec; 17(12):1751-5. PubMed ID: 2961574 [TBL] [Abstract][Full Text] [Related]
28. Graft-facilitating doses of ex vivo activated gammadelta T cells do not cause lethal murine graft-vs.-host disease. Drobyski WR; Majewski D; Hanson G Biol Blood Marrow Transplant; 1999; 5(4):222-30. PubMed ID: 10465102 [TBL] [Abstract][Full Text] [Related]
29. Synergistic effect of murine cytomegalovirus on the induction of acute graft-vs-host disease involving MHC class I differences only. Analysis of in vitro T cell function. Via CS; Shanley JD; Shearer GM J Immunol; 1990 Nov; 145(10):3283-9. PubMed ID: 2172381 [TBL] [Abstract][Full Text] [Related]
30. Reactivity of hybridomas derived from T cells activated in vivo during graft-versus-host disease. Leibnitz RR; Lipsky PE; Thiele DL J Immunol; 1994 Dec; 153(11):4959-68. PubMed ID: 7963559 [TBL] [Abstract][Full Text] [Related]
31. Suppressor T cells, distinct from "veto cells," are induced by alloantigen priming and mediate transferable suppression of cytotoxic T lymphocyte responses in vivo. Owens T; Crispe IN J Immunol; 1985 Nov; 135(5):2984-9. PubMed ID: 2413108 [TBL] [Abstract][Full Text] [Related]
32. Cutting edge: sustained expansion of CD8+ T cells requires CD154 expression by Th cells in acute graft versus host disease. Buhlmann JE; Gonzalez M; Ginther B; Panoskaltsis-Mortari A; Blazar BR; Greiner DL; Rossini AA; Flavell R; Noelle RJ J Immunol; 1999 Apr; 162(8):4373-6. PubMed ID: 10201970 [TBL] [Abstract][Full Text] [Related]
33. Unexpected role of TNF-alpha in graft versus host reaction (GVHR): donor-derived TNF-alpha suppresses GVHR via inhibition of IFN-gamma-dependent donor type-1 immunity. Yamamoto S; Tsuji T; Matsuzaki J; Zhange Y; Chamoto K; Kosaka A; Togashi Y; Sekikawa K; Sawada K; Takeshima T; Koike T; Nishimura T Int Immunol; 2004 Jun; 16(6):811-7. PubMed ID: 15126416 [TBL] [Abstract][Full Text] [Related]
34. Graft-vs.-host and graft-vs.-leukemia reactions after delayed infusions of donor T-subsets. Johnson BD; Becker EE; Truitt RL Biol Blood Marrow Transplant; 1999; 5(3):123-32. PubMed ID: 10392958 [TBL] [Abstract][Full Text] [Related]
35. Role of immunoregulatory donor T cells in suppression of graft-versus-host disease following donor leukocyte infusion therapy. Johnson BD; Becker EE; LaBelle JL; Truitt RL J Immunol; 1999 Dec; 163(12):6479-87. PubMed ID: 10586039 [TBL] [Abstract][Full Text] [Related]
36. The parent-into-F1 murine model in the study of lupus-like autoimmunity and CD8 cytotoxic T lymphocyte function. Soloviova K; Puliaiev M; Foster A; Via CS Methods Mol Biol; 2012; 900():253-70. PubMed ID: 22933073 [TBL] [Abstract][Full Text] [Related]
37. Gamma delta T cells in the pathobiology of murine acute graft-versus-host disease. Evidence that gamma delta T cells mediate natural killer-like cytotoxicity in the host and that elimination of these cells from donors significantly reduces mortality. Ellison CA; MacDonald GC; Rector ES; Gartner JG J Immunol; 1995 Nov; 155(9):4189-98. PubMed ID: 7594574 [TBL] [Abstract][Full Text] [Related]
38. Defective thymic education of L3T4+ T helper cell function in graft-vs-host mice. Fukuzawa M; Via CS; Shearer GM J Immunol; 1988 Jul; 141(2):430-9. PubMed ID: 2968400 [TBL] [Abstract][Full Text] [Related]
39. Modulation of F1 cytotoxic potentials by GvHR. Host- and donor-derived cytotoxic lymphocytes arise in the unirradiated F1 host spleens under the condition of GvHR-associated immunosuppression. Kubota E; Ishikawa H; Saito K J Immunol; 1983 Sep; 131(3):1142-8. PubMed ID: 6604089 [TBL] [Abstract][Full Text] [Related]
40. DBA/2J and DBA/2Ha lymphocytes differ in their ability to induce graft-vs-host disease. Fast LD J Immunol; 1989 Oct; 143(8):2489-93. PubMed ID: 2794505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]