These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 6230741)

  • 1. Fatigue response of lumbar intervertebral joints under axial cyclic loading.
    Liu YK; Njus G; Buckwalter J; Wakano K
    Spine (Phila Pa 1976); 1983; 8(8):857-65. PubMed ID: 6230741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical yield of the lumbar annulus: a possible contributor to instability: Laboratory investigation.
    Stemper BD; Baisden JL; Yoganandan N; Shender BS; Maiman DJ
    J Neurosurg Spine; 2014 Oct; 21(4):608-13. PubMed ID: 25084030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading.
    Lin HS; Liu YK; Adams KH
    J Bone Joint Surg Am; 1978 Jan; 60(1):41-55. PubMed ID: 624758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An improved vertebral body replacement for the thoracolumbar spine. A biomechanical in vitro test on human lumbar vertebral bodies].
    Reinhold M; Schmölz W; Canto F; Krappinger D; Blauth M; Knop C
    Unfallchirurg; 2007 Apr; 110(4):327-33. PubMed ID: 17211598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discogenic origins of spinal instability.
    Zhao F; Pollintine P; Hole BD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2621-30. PubMed ID: 16319748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic compressive properties of human lumbar intervertebral joints: a comparison between fresh and thawed specimens.
    Smeathers JE; Joanes DN
    J Biomech; 1988; 21(5):425-33. PubMed ID: 3417694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study.
    Shirazi-Adl SA; Shrivastava SC; Ahmed AM
    Spine (Phila Pa 1976); 1984 Mar; 9(2):120-34. PubMed ID: 6233710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading.
    Frei H; Oxland TR; Rathonyi GC; Nolte LP
    Spine (Phila Pa 1976); 2001 Oct; 26(19):2080-9. PubMed ID: 11698883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations.
    Kasra M; Shirazi-Adl A; Drouin G
    Spine (Phila Pa 1976); 1992 Jan; 17(1):93-102. PubMed ID: 1536019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental study of lumbar destabilization. Restabilization and bone density.
    Bennett GJ; Serhan HA; Sorini PM; Willis BH
    Spine (Phila Pa 1976); 1997 Jul; 22(13):1448-53. PubMed ID: 9231962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preload substantially influences the intervertebral disc stiffness in loading-unloading cycles of compression.
    Schmidt H; Shirazi-Adl A; Schilling C; Dreischarf M
    J Biomech; 2016 Jun; 49(9):1926-1932. PubMed ID: 27209550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation of the vertebral end-plate under axial loading of the spine.
    Brinckmann P; Frobin W; Hierholzer E; Horst M
    Spine (Phila Pa 1976); 1983; 8(8):851-6. PubMed ID: 6670020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torsional fatigue of the lumbar intervertebral joints.
    Liu YK; Goel VK; Dejong A; Njus G; Nishiyama K; Buckwalter J
    Spine (Phila Pa 1976); 1985 Dec; 10(10):894-900. PubMed ID: 3832457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmental stability and compressive strength of posterior lumbar interbody fusion implants.
    Tsantrizos A; Baramki HG; Zeidman S; Steffen T
    Spine (Phila Pa 1976); 2000 Aug; 25(15):1899-907. PubMed ID: 10908932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous cross-linking increases the stability of spinal motion segments.
    Hedman TP; Saito H; Vo C; Chuang SY
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E480-5. PubMed ID: 16816747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft tissue strain and facet face interaction in the lumbar intervertebral joint--Part II: Calculated results and comparison with experimental data.
    Tencer AF; Mayer TG
    J Biomech Eng; 1983 Aug; 105(3):210-5. PubMed ID: 6632823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical properties of human intervertebral discs subjected to axial dynamic compression. A comparison of lumbar and thoracic discs.
    Koeller W; Meier W; Hartmann F
    Spine (Phila Pa 1976); 1984 Oct; 9(7):725-33. PubMed ID: 6505843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of secondary variables in the measurement of the mechanical properties of the lumbar intervertebral joint.
    Tencer AF; Ahmed AM
    J Biomech Eng; 1981 Aug; 103(3):129-37. PubMed ID: 7278189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.