These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 6231049)

  • 1. Circular dichroism and nucleotide and phosphate-induced conformational changes of mitochondrial adenosinetriphosphatase.
    Roux B; Fellous G; Godinot C
    Biochemistry; 1984 Jan; 23(3):534-7. PubMed ID: 6231049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of the nucleotide-binding sites on the mitochondrial F1-ATPase through the use of a photoactivable derivative of adenylyl imidodiphosphate.
    Lunardi J; Vignais PV
    Biochim Biophys Acta; 1982 Oct; 682(1):124-34. PubMed ID: 6215942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic study of the interaction between mitochondrial F1 adenosine triphosphatase and adenylyl imidodiphosphate and guanylyl imidodiphosphate.
    Belda FJ; Carmona FG; Cánovas FG; Gómez-Fernández JC; Lozano JA
    Biochem J; 1983 Mar; 210(3):727-35. PubMed ID: 6223627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of Mg2+ on mitochondrial F0.F1 ATPase and characteristics of the nucleotide binding sites.
    Ye JJ; Du J; Lin ZH
    Biochem Int; 1989 Dec; 19(6):1317-21. PubMed ID: 2534570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between ADP and nucleotide analogues to occupy regulatory sites(s) related to hysteretic inhibition of mitochondrial F1-ATPase.
    Baubichon H; Godinot C; Di Pietro A; Gautheron DC
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1032-8. PubMed ID: 6455998
    [No Abstract]   [Full Text] [Related]  

  • 6. Tightly bound nucleotides affect phosphate binding to mitochondrial F1-ATPase.
    Kozlov IA; Vulfson EN
    FEBS Lett; 1985 Mar; 182(2):425-8. PubMed ID: 2858408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the adenine nucleotide content of beef-heart mitochondrial F1 ATPase during ATP synthesis in dimethyl sulfoxide.
    Beharry S; Bragg PD
    Biochem Biophys Res Commun; 1992 Jan; 182(2):697-702. PubMed ID: 1531174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of trypsin to monitor conformational changes of mitochondrial adenosinetriphosphatase induced by nucleotides and phosphate.
    Di Pietro A; Godinot C; Gautheron DC
    Biochemistry; 1983 Feb; 22(4):785-92. PubMed ID: 6220737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of phosphate on the ADP-induced hysteretic inhibition of mitochondrial adenosine 5'-triphosphatase. Effects of the natural protein inhibitor.
    Di Pietro A; Fellous G; Godinot C; Gautheron DC
    Biochim Biophys Acta; 1986 Sep; 851(2):283-94. PubMed ID: 2874830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+.
    Wu D; Boyer PD
    Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetic and structural changes of the mitochondrial F1-ATPase with temperature.
    Baracca A; Curatola G; Parenti Castelli G; Solaini G
    Biochem Biophys Res Commun; 1986 May; 136(3):891-8. PubMed ID: 2872889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-induced states of isolated F1-ATPase affect catalysis, enzyme conformation and high-affinity nucleotide binding sites.
    Baracca A; Amler E; Solaini G; Parenti Castelli G; Lenaz G; Houstek J
    Biochim Biophys Acta; 1989 Aug; 976(1):77-84. PubMed ID: 2527562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in chemical properties of mitochondrial adenosinetriphosphatase upon removal of tightly bound nucleotides.
    Tamura JK; Wang JH
    Biochemistry; 1983 Apr; 22(8):1947-54. PubMed ID: 6221755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further investigations on the inorganic phosphate binding site of beef heart mitochondrial F1-ATPase.
    Pougeois R; Lauquin GJ
    Biochemistry; 1985 Feb; 24(4):1020-4. PubMed ID: 2859884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes of the mitochondrial F1-ATPase epsilon-subunit induced by nucleotide binding as observed by phosphorescence spectroscopy.
    Baracca A; Gabellieri E; Barogi S; Solaini G
    J Biol Chem; 1995 Sep; 270(37):21845-51. PubMed ID: 7665607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties of the Escherichia coli proton adenosinetriphosphatase: evidence that nucleotide bound at noncatalytic sites is not involved in regulation of oxidative phosphorylation.
    Wise JG; Senior AE
    Biochemistry; 1985 Nov; 24(24):6949-54. PubMed ID: 2866799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the natural ATPase inhibitor on the binding of adenine nucleotides and inorganic phosphate to mitochondrial F1-ATPase.
    Klein G; Lunardi J; Vignais PV
    Biochim Biophys Acta; 1981 Jul; 636(2):185-92. PubMed ID: 6456765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies on rat liver and beef heart mitochondrial ATPase. Evidence for nucleotide binding at separate regulatory and catalytic sites.
    Schuster SM; Ebel RE; Lardy HA
    J Biol Chem; 1975 Oct; 250(19):7848-53. PubMed ID: 126241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Mg2+ with F0.F1 mitochondrial ATPase as related to its slow active/inactive transition.
    Bulygin VV; Vinogradov AD
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):149-56. PubMed ID: 1828147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.