These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 6231056)
1. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. Saks VA; Ventura-Clapier R; Huchua ZA; Preobrazhensky AN; Emelin IV Biochim Biophys Acta; 1984 Apr; 803(4):254-64. PubMed ID: 6231056 [TBL] [Abstract][Full Text] [Related]
2. Specific enhancement of the cardiac myofibrillar ATPase by bound creatine kinase. Krause SM; Jacobus WE J Biol Chem; 1992 Feb; 267(4):2480-6. PubMed ID: 1531142 [TBL] [Abstract][Full Text] [Related]
3. Intracellular energy transport and control of cardiac contraction. Saks VA; Kupriyanov VV Adv Myocardiol; 1982; 3():475-97. PubMed ID: 6221378 [TBL] [Abstract][Full Text] [Related]
4. [Myofibrillar creatine kinase: reversible binding to contractile proteins, stoichiometric ratio to myosin and its functional role]. Elizarova GV; Sukhanov AA; Saks VA Biokhimiia; 1987 Apr; 52(4):667-75. PubMed ID: 2954589 [TBL] [Abstract][Full Text] [Related]
5. Disruption of myofibrillar energy use: dual mechanisms that may contribute to postischemic dysfunction in stunned myocardium. Greenfield RA; Swain JL Circ Res; 1987 Feb; 60(2):283-9. PubMed ID: 2952365 [TBL] [Abstract][Full Text] [Related]
6. Rigor tension in single skinned rat cardiac cell: role of myofibrillar creatine kinase. Veksler VI; Lechene P; Matrougui K; Ventura-Clapier R Cardiovasc Res; 1997 Dec; 36(3):354-62. PubMed ID: 9534856 [TBL] [Abstract][Full Text] [Related]
7. Role of myofibrillar creatine kinase in the relaxation of rigor tension in skinned cardiac muscle. Ventura-Clapier R; Vassort G Pflugers Arch; 1985 May; 404(2):157-61. PubMed ID: 3874393 [TBL] [Abstract][Full Text] [Related]
8. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myofibrils from rainbow trout and freshwater turtle. Haagensen L; Jensen DH; Gesser H Comp Biochem Physiol A Mol Integr Physiol; 2008 Aug; 150(4):404-9. PubMed ID: 18515165 [TBL] [Abstract][Full Text] [Related]
10. Effect of global myocardial stunning on Ca2(+)-sensitive myofibrillar ATPase activity and creatine kinase kinetics. Krause SM Am J Physiol; 1990 Sep; 259(3 Pt 2):H813-9. PubMed ID: 2144402 [TBL] [Abstract][Full Text] [Related]
11. Perinatal enhancement of cardiac myofibrillar creatine kinase activity without change in enzyme Km. Dowell RT; Fu MC Am J Physiol; 1993 Aug; 265(2 Pt 1):C375-8. PubMed ID: 8368267 [TBL] [Abstract][Full Text] [Related]
12. Myofibrillar end of the creatine phosphate energy shuttle. Savabi F; Geiger PJ; Bessman SP Am J Physiol; 1984 Nov; 247(5 Pt 1):C424-32. PubMed ID: 6238538 [TBL] [Abstract][Full Text] [Related]
13. Unchanged mitochondrial organization and compartmentation of high-energy phosphates in creatine-deficient GAMT-/- mouse hearts. Branovets J; Sepp M; Kotlyarova S; Jepihhina N; Sokolova N; Aksentijevic D; Lygate CA; Neubauer S; Vendelin M; Birkedal R Am J Physiol Heart Circ Physiol; 2013 Aug; 305(4):H506-20. PubMed ID: 23792673 [TBL] [Abstract][Full Text] [Related]
14. ATP produced by myocardial sarcolemmal-bound creatine kinase is not preferentially used by the Na+ pump. Philipson KD; Nishimoto AY Biochem Biophys Res Commun; 1984 Nov; 124(3):696-702. PubMed ID: 6508778 [TBL] [Abstract][Full Text] [Related]
15. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. Wallimann T; Schlösser T; Eppenberger HM J Biol Chem; 1984 Apr; 259(8):5238-46. PubMed ID: 6143755 [TBL] [Abstract][Full Text] [Related]
16. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils]. Saks VA; Lipina NV; Liulina IV; Chernousova GB; Fetter R; Smirnov VI; Chazov EI Biokhimiia; 1976 Aug; 41(8):1460-70. PubMed ID: 1030648 [TBL] [Abstract][Full Text] [Related]
17. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions. Saks VA; Chernousova GB; Gukovsky DE; Smirnov VN; Chazov EI Eur J Biochem; 1975 Sep; 57(1):273-90. PubMed ID: 126157 [TBL] [Abstract][Full Text] [Related]
18. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related]
19. Intimate coupling of creatine phosphokinase and myofibrillar adenosinetriphosphatase. Bessman SP; Yang WC; Geiger PJ; Erickson-Viitanen S Biochem Biophys Res Commun; 1980 Oct; 96(3):1414-20. PubMed ID: 6449202 [No Abstract] [Full Text] [Related]
20. Cardiac myofibrillar creatine kinase Km is not influenced by contractile protein binding. Dowell RT; Fu MC Life Sci; 1992; 50(20):1551-9. PubMed ID: 1579047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]