These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6231295)

  • 21. Nuclease hypersensitivity in the beta-globin gene region of K562 cells.
    Cao SX; Schechter AN
    Eur J Biochem; 1988 May; 173(3):517-22. PubMed ID: 2453359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and function of the murine beta-globin locus control region 5' HS-3.
    Hug BA; Moon AM; Ley TJ
    Nucleic Acids Res; 1992 Nov; 20(21):5771-8. PubMed ID: 1454538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA sequences required for regulated expression of beta-globin genes in murine erythroleukemia cells.
    Wright S; Rosenthal A; Flavell R; Grosveld F
    Cell; 1984 Aug; 38(1):265-73. PubMed ID: 6088069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences in human alpha- and beta-globin gene expression in mouse erythroleukemia cells: the role of intragenic sequences.
    Charnay P; Treisman R; Mellon P; Chao M; Axel R; Maniatis T
    Cell; 1984 Aug; 38(1):251-63. PubMed ID: 6205764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Commitment of murine erythroleukemia (MEL) cells to terminal differentiation is associated with coordinated expression of globin and ribosomal genes.
    Tsiftsoglou AS; Wong W; Volloch V; Gusella J; Housman D
    Prog Clin Biol Res; 1982; 102 pt A():69-79. PubMed ID: 6300921
    [No Abstract]   [Full Text] [Related]  

  • 26. Targeted remodeling of human beta-globin promoter chromatin structure produces increased expression and decreased silencing.
    Iler N; Goodwin AJ; McInerney J; Nemeth MJ; Pomerantz O; Layon ME; Lowrey CH
    Blood Cells Mol Dis; 1999 Feb; 25(1):47-60. PubMed ID: 10349513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids.
    Forrester WC; Takegawa S; Papayannopoulou T; Stamatoyannopoulos G; Groudine M
    Nucleic Acids Res; 1987 Dec; 15(24):10159-77. PubMed ID: 3480506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of globin gene transcription by erythropoietin in erythroblasts from friend virus-infected mice.
    Bondurant MC; Lind RN; Koury MJ; Ferguson ME
    Mol Cell Biol; 1985 Apr; 5(4):675-83. PubMed ID: 3990688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preferential transcription and nuclear transport of globin gene sequences, as control steps leading to final differentiation of murine erythroleukemic cells.
    Shaul Y; Ginzburg I; Aviv H
    Eur J Biochem; 1982 Nov; 128(2-3):637-42. PubMed ID: 6897535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA sequences required for regulated expression of beta-globin genes in murine erythroleukaemia cells.
    Wright S; deBoer E; Rosenthal A; Flavell RA; Grosveld F
    Philos Trans R Soc Lond B Biol Sci; 1984 Dec; 307(1132):271-82. PubMed ID: 6151697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of dexamethasone in globin gene expression in differentiating Friend cells.
    Mierendorf RC; Mueller GC
    J Biol Chem; 1981 Jul; 256(13):6736-41. PubMed ID: 7240240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNase I and nuclease S1 sensitivity of the rabbit beta 1 globin gene in nuclei and in supercoiled plasmids.
    Margot JB; Hardison RC
    J Mol Biol; 1985 Jul; 184(2):195-210. PubMed ID: 2993630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation and repression of a beta-globin gene in cell hybrids is accompanied by a shift in its temporal replication.
    Dhar V; Skoultchi AI; Schildkraut CL
    Mol Cell Biol; 1989 Aug; 9(8):3524-32. PubMed ID: 2796994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of DNase I hypersensitive site formation within the human globin locus control region.
    Lowrey CH; Bodine DM; Nienhuis AW
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):1143-7. PubMed ID: 1736298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nuclease sensitivity of active genes.
    Nicolas RH; Wright CA; Cockerill PN; Wyke JA; Goodwin GH
    Nucleic Acids Res; 1983 Feb; 11(3):753-72. PubMed ID: 6300766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erythroid-specific nuclease-hypersensitive sites flanking the human beta-globin domain.
    Dhar V; Nandi A; Schildkraut CL; Skoultchi AI
    Mol Cell Biol; 1990 Aug; 10(8):4324-33. PubMed ID: 2370867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular and cellular mechanisms of leukemic hemopoietic cell differentiation: an analysis of the Friend system.
    Tsiftsoglou AS; Wong W
    Anticancer Res; 1985; 5(1):81-99. PubMed ID: 3888045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5'-flanking region of the actively transcribed ovalbumin gene.
    Kaye JS; Bellard M; Dretzen G; Bellard F; Chambon P
    EMBO J; 1984 May; 3(5):1137-44. PubMed ID: 6329739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNase I hypersensitivity in the gamma globin gene locus of K562 cells.
    Lachman HM; Mears JG
    Nucleic Acids Res; 1983 Sep; 11(17):6065-77. PubMed ID: 6310525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digestion of the chicken beta-globin gene chromatin with micrococcal nuclease reveals the presence of an altered nucleosomal array characterized by an atypical ladder of DNA fragments.
    Sun YL; Xu YZ; Bellard M; Chambon P
    EMBO J; 1986 Feb; 5(2):293-300. PubMed ID: 3011400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.