These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 6232276)
1. Assessment of the rate of bound substrate interconversion and of ATP acceleration of product release during catalysis by mitochondrial adenosine triphosphatase. O'Neal CC; Boyer PD J Biol Chem; 1984 May; 259(9):5761-7. PubMed ID: 6232276 [TBL] [Abstract][Full Text] [Related]
2. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. García JJ; Gómez-Puyou A; Maldonado E; Tuena De Gómez-Puyou M Eur J Biochem; 1997 Oct; 249(2):622-9. PubMed ID: 9370375 [TBL] [Abstract][Full Text] [Related]
3. Elucidating Events within the Black Box of Enzyme Catalysis in Energy Metabolism: Insights into the Molecular Mechanism of ATP Hydrolysis by F Nath S Biomolecules; 2023 Oct; 13(11):. PubMed ID: 38002278 [TBL] [Abstract][Full Text] [Related]
4. Rates of various reactions catalyzed by ATP synthase as related to the mechanism of ATP synthesis. Berkich DA; Williams GD; Masiakos PT; Smith MB; Boyer PD; LaNoue KF J Biol Chem; 1991 Jan; 266(1):123-9. PubMed ID: 1824691 [TBL] [Abstract][Full Text] [Related]
5. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D; Boyer PD Biochemistry; 1986 Jun; 25(11):3390-6. PubMed ID: 2873834 [TBL] [Abstract][Full Text] [Related]
6. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of the formation of enzyme-bound ATP from medium inorganic phosphate by mitochondrial F1 adenosinetriphosphatase in the presence of dimethyl sulfoxide. Kandpal RP; Stempel KE; Boyer PD Biochemistry; 1987 Mar; 26(6):1512-7. PubMed ID: 2885026 [TBL] [Abstract][Full Text] [Related]
8. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate. Murataliev MB Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210 [TBL] [Abstract][Full Text] [Related]
9. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
10. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756 [TBL] [Abstract][Full Text] [Related]
11. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. Drobinskaya IY; Kozlov IA; Murataliev MB; Vulfson EN FEBS Lett; 1985 Mar; 182(2):419-24. PubMed ID: 2858407 [TBL] [Abstract][Full Text] [Related]
12. Relationships of inosine triphosphate and bicarbonate effects on F1 ATPase to the binding change mechanism. Kasho VN; Boyer PD J Bioenerg Biomembr; 1984 Dec; 16(5-6):407-19. PubMed ID: 6242244 [TBL] [Abstract][Full Text] [Related]
13. Vacuolar ATPases, like F1,F0-ATPases, show a strong dependence of the reaction velocity on the binding of more than one ATP per enzyme. Kasho VN; Boyer PD Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8708-11. PubMed ID: 2530585 [TBL] [Abstract][Full Text] [Related]
14. F1 ATPase from the thermophilic bacterium PS3 (TF1) shows ATP modulation of oxygen exchange. Kasho VN; Yoshida M; Boyer PD Biochemistry; 1989 Aug; 28(17):6949-54. PubMed ID: 2531004 [TBL] [Abstract][Full Text] [Related]
15. Catalytic site occupancy during ATP hydrolysis by MF1-ATPase. Evidence for alternating high affinity sites during steady-state turnover. Cunningham D; Cross RL J Biol Chem; 1988 Dec; 263(35):18850-6. PubMed ID: 2904435 [TBL] [Abstract][Full Text] [Related]
16. Catalytic sites of Escherichia coli F1-ATPase. Characterization of unisite catalysis at varied pH. al-Shawi MK; Senior AE Biochemistry; 1992 Jan; 31(3):878-85. PubMed ID: 1531027 [TBL] [Abstract][Full Text] [Related]
17. Unisite hydrolysis of [gamma 32 P]ATP by soluble mitochondrial F1-ATPase and its release by excess ADP and ATP. Effect of trifluoperazine. García JJ; Gómez-Puyou A; de Gómez-Puyou MT J Bioenerg Biomembr; 1997 Feb; 29(1):61-70. PubMed ID: 9067803 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex. Hanley-Trawick S; Carpen ME; Dunaway-Mariano D; Pedersen PL; Hullihen J Arch Biochem Biophys; 1989 Jan; 268(1):116-23. PubMed ID: 2521440 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of ATP synthesis by mitochondrial ATP synthase from beef heart. Souid AK; Penefsky HS J Bioenerg Biomembr; 1994 Dec; 26(6):627-30. PubMed ID: 7721724 [TBL] [Abstract][Full Text] [Related]
20. Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase. Pérez JA; Ferguson SJ Biochemistry; 1990 Nov; 29(46):10503-18. PubMed ID: 2148690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]