These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 623273)

  • 1. Autoregulation of cerebral blood flow during early experimental renal hypertension in the conscious dog.
    Allotey JB; Klassen GA
    Am J Physiol; 1978 Jan; 234(1):H35-9. PubMed ID: 623273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of experimental cervical spinal cord transection. Part III: Effects of acute cervical spinal cord transection on cerebral blood flow.
    Tibbs PA; Young B; McAllister RG; Todd EP
    J Neurosurg; 1979 May; 50(5):633-8. PubMed ID: 34676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Right ventricular coronary blood flow patterns during aortic pressure reduction in renal hypertensive dogs.
    Smolich JJ; Weissberg PL; Friberg P; Korner PI
    Acta Physiol Scand; 1991 Apr; 141(4):507-16. PubMed ID: 1831583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional blood flows measured in conscious rats by combined Fick and microsphere methods.
    Tsuchiya M; Ferrone RA; Walsh GM; Frohlich ED
    Am J Physiol; 1978 Sep; 235(3):H357-60. PubMed ID: 696848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal hemodynamics in dogs with chronic one-kidney, one-wrapped hypertension.
    Bell DR; Overbeck HW
    Am J Physiol; 1985 Aug; 249(2 Pt 2):H300-8. PubMed ID: 4025566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Detection of changes in cerebral blood flow and cerebrovascular autoregulation by near-infrared spectroscopy in newborn piglets].
    Huang HJ; Shao XM; Cheng GQ
    Zhonghua Er Ke Za Zhi; 2007 May; 45(5):349-53. PubMed ID: 17697620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of an increased cardiac output on vascular responses to vasoactive agents in two-kidney, one-clip Goldblatt hypertension.
    Greenberg S; McGowan C; Gaida M
    Clin Exp Hypertens A; 1982; 4(8):1287-302. PubMed ID: 6811169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total and regional cerebral blood flow during perfusion from the lateral ventricle to the cisterna magna in the conscious dog: effect of hemorrhagic hypotension and retransfusion on cerebral blood flow.
    Fritschka E; Ferguson JL; Spitzer JJ
    Circ Shock; 1980; 7(3):333-42. PubMed ID: 7449048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of metabolic acidosis upon autoregulation of cerebral blood flow in newborn dogs.
    Hermansen MC; Kotagal UR; Kleinman LI
    Brain Res; 1984 Dec; 324(1):101-5. PubMed ID: 6518378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of hypertension and left ventricular hypertrophy on the lower range of coronary autoregulation.
    Harrison DG; Florentine MS; Brooks LA; Cooper SM; Marcus ML
    Circulation; 1988 May; 77(5):1108-15. PubMed ID: 2966018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerebral blood flow and cerebral blood flow velocity during angiotensin-induced arterial hypertension in dogs.
    Werner C; Kochs E; Hoffman WE; Blanc IF; Schulte am Esch J
    Can J Anaesth; 1993 Aug; 40(8):755-60. PubMed ID: 8403159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical considerations for modeling cerebral blood flow autoregulation to systemic arterial pressure.
    Gao E; Young WL; Pile-Spellman J; Ornstein E; Ma Q
    Am J Physiol; 1998 Mar; 274(3):H1023-31. PubMed ID: 9530217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of jugular venous pressure on cerebral autoregulation in dogs.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1516-24. PubMed ID: 3144187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon.
    Jones JV; Fitch W; MacKenzie ET; Strandgaard S; Harper AM
    Circ Res; 1976 Oct; 39(4):555-7. PubMed ID: 963839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of injection site for coronary blood flow determinations by microspheres in rats.
    Wicker P; Tarazi RC
    Am J Physiol; 1982 Jan; 242(1):H94-7. PubMed ID: 7058918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral blood flow in rats with renal and spontaneous hypertension: resetting of the lower limit of autoregulation.
    Barry DI; Strandgaard S; Graham DI; Braendstrup O; Svendsen UG; Vorstrup S; Hemmingsen R; Bolwig TG
    J Cereb Blood Flow Metab; 1982 Sep; 2(3):347-53. PubMed ID: 7096459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of cerebrovascular autoregulation in experimental meningitis in rabbits.
    Tureen JH; Dworkin RJ; Kennedy SL; Sachdeva M; Sande MA
    J Clin Invest; 1990 Feb; 85(2):577-81. PubMed ID: 2105342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral venous outflow and arterial microsphere flow with elevated venous pressure.
    Wagner EM; Traystman RJ
    Am J Physiol; 1983 Apr; 244(4):H505-12. PubMed ID: 6404180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral blood flow autoregulation in acute intracranial hypertension.
    Hauerberg J; Juhler M
    J Cereb Blood Flow Metab; 1994 May; 14(3):519-25. PubMed ID: 8163595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury.
    Rosenthal G; Sanchez-Mejia RO; Phan N; Hemphill JC; Martin C; Manley GT
    J Neurosurg; 2011 Jan; 114(1):62-70. PubMed ID: 20707619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.