These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 6233801)

  • 1. Activation volumes of the calcium dependent para-nitrophenyl phosphate hydrolysis of the sarcoplasmic reticulum calcium transport enzyme.
    König KG; Hasselbach W
    Z Naturforsch C Biosci; 1984; 39(3-4):282-8. PubMed ID: 6233801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure effects on the interactions of the sarcoplasmic reticulum calcium transport enzyme with calcium and para-nitrophenyl phosphate.
    Hasselbach W; Stephan L
    Z Naturforsch C J Biosci; 1987 May; 42(5):641-52. PubMed ID: 2955599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure effects on the interactions of the sarcoplasmic reticulum calcium transport enzyme with calcium and dinitrophenyl phosphate.
    Hasselbach W
    Z Naturforsch C J Biosci; 1988; 43(11-12):929-37. PubMed ID: 2977546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and binding volumes of the sarcoplasmic reticulum transport enzyme activated by calcium or strontium.
    Stephan S; Hasselbach W
    Eur J Biochem; 1991 Feb; 196(1):231-7. PubMed ID: 2001703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadate inhibition of ATP and p-nitrophenyl phosphate hydrolysis in the fragmented sarcoplasmic reticulum.
    Vashchenko VI; Utegalieva RS; Esyrev OV
    Biochim Biophys Acta; 1991 Aug; 1079(1):8-14. PubMed ID: 1653615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume changes in high-affinity calcium binding of the sarcoplasmic reticulum calcium-transport enzyme.
    Stephan S; Hasselbach W
    Eur J Biochem; 1991 Dec; 202(2):551-7. PubMed ID: 1761055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative effects of Ca2+ and Sr2+ on sarcoplasmic reticulum adenosine triphosphatase.
    Holguín JA
    Arch Biochem Biophys; 1986 Nov; 251(1):9-16. PubMed ID: 3024577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two simultaneous binding sites for nucleotide analogs are kinetically distinguishable on the sarcoplasmic reticulum Ca(2+)-ATPase.
    Mignaco JA; Lupi OH; Santos FT; Barrabin H; Scofano HM
    Biochemistry; 1996 Apr; 35(13):3886-91. PubMed ID: 8672418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of 4-azido-2-nitrophenyl phosphate, a pseudosubstrate, with the sarcoplasmic reticulum Ca-ATPase.
    Lacapère JJ; Garin J
    Biochemistry; 1994 Mar; 33(9):2586-93. PubMed ID: 8117720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic kinetics of ATP hydrolysis by calcium-dependent ATPase of the sarcoplasmic reticulum of skeletal muscle. Evidence for a nucleoside triphosphate effector site.
    Taylor JS; Hattan D
    J Biol Chem; 1979 Jun; 254(11):4402-7. PubMed ID: 155695
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of water, hydrogen ion, and temperature on the synthesis of adenosine triphosphate by the sarcoplasmic reticulum adenosine triphosphatase in the absence of a calcium ion gradient.
    de Meis L; Martins OB; Alves EW
    Biochemistry; 1980 Sep; 19(18):4252-61. PubMed ID: 6448066
    [No Abstract]   [Full Text] [Related]  

  • 12. [P-nitrophenol jet and titration of the phosphorylation sites of sarcoplasmic reticulum ATPase].
    Tenu JP; Ghelis C; Chevallier J
    Biochimie; 1974; 56(5):791-3. PubMed ID: 4281319
    [No Abstract]   [Full Text] [Related]  

  • 13. The modulation of Ca-ATPase activity and protein-lipid interactions in the sarcoplasmic reticulum by ATP.
    Boldyrev A; Lopina O; Prokopjeva V; Stubbs C; Quinn PJ
    Biochem Int; 1983 Mar; 6(3):297-305. PubMed ID: 6236816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pressure and calcium on the reversible inhibition of the sarcoplasmic-reticulum calcium-transport enzyme and on its tryptic cleavage pattern.
    Ronzani N; Hasselbach W; Stephan L
    Eur J Biochem; 1990 Mar; 188(3):557-65. PubMed ID: 2139606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupling of calcium control and phosphohydrolase activity in sarcoplasmic reticulum vesicles.
    Inesi G; Kurzmack M; Nakamoto R; de Meis L; Bernhard SA
    J Biol Chem; 1980 Jul; 255(13):6040-3. PubMed ID: 6446552
    [No Abstract]   [Full Text] [Related]  

  • 16. K(+)- and Mg2(+)-dependent hydrolysis of acetyl phosphate catalyzed by the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum.
    Chini EN; Montero-Lomeli M; de Meis L
    Biochim Biophys Acta; 1990 Nov; 1030(1):152-6. PubMed ID: 2148270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-sensitive and -insensitive phosphorylated intermediates of solubilized Ca2+,Mg2+-dependent ATPase of the sarcoplasmic reticulum from skeletal muscle.
    Takisawa H; Tonomura Y
    J Biochem; 1979 Aug; 86(2):425-41. PubMed ID: 158012
    [No Abstract]   [Full Text] [Related]  

  • 18. Specificity of the sarcoplasmic reticulum calcium ATPase at the hydrolysis step.
    Chipman DM; Jencks WP
    Biochemistry; 1988 Jul; 27(15):5707-12. PubMed ID: 2972313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of acylphosphate formation of cardiac sarcoplasmic reticulum ATPase by calmodulin-dependent phosphorylation.
    Pifl C; Plank B; Hellmann G; Wyskovsky W; Suko J
    Z Naturforsch C Biosci; 1984; 39(3-4):289-92. PubMed ID: 6233802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing the versatility of the sarcoplasmic reticulum Ca(2+)-ATPase reaction cycle when p-nitrophenyl phosphate is the substrate.
    Fernandez-Belda F; Fortea MI; Soler F
    J Biol Chem; 2001 Mar; 276(11):7998-8004. PubMed ID: 11115502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.