These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 6234024)

  • 1. The asymmetric effect of lanthanides on Na+-gradient-dependent Ca2+ transport in synaptic plasma membrane vesicles.
    Rahamimoff H; Spanier R
    Biochim Biophys Acta; 1984 Jun; 773(2):279-89. PubMed ID: 6234024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of La3+ to distinguish activity of the plasmalemmal Ca2+ pump from Na+/Ca2+ exchange in arterial myocytes.
    Shimizu H; Borin ML; Blaustein MP
    Cell Calcium; 1997 Jan; 21(1):31-41. PubMed ID: 9056075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-Ca2+ exchange activity in synaptic plasma membranes derived from the electric organ of Torpedo ocellata.
    Tessari M; Rahamimoff H
    Biochim Biophys Acta; 1991 Jul; 1066(2):208-18. PubMed ID: 1854784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation of synaptic plasma membrane vesicles containing calcium pump and sodium-calcium exchange activities.
    Gill DL; Chueh SH; Noel MW; Ueda T
    Biochim Biophys Acta; 1986 Mar; 856(1):165-73. PubMed ID: 3006769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes.
    Gill DL; Grollman EF; Kohn LD
    J Biol Chem; 1981 Jan; 256(1):184-92. PubMed ID: 6778859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of the divalent cation channels of the hepatocyte plasma membrane receptor-activated Ca2+ inflow system using lanthanide ions.
    Fernando KC; Barritt GJ
    Biochim Biophys Acta; 1995 Jul; 1268(1):97-106. PubMed ID: 7542927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.
    van Heeswijk MP; Geertsen JA; van Os CH
    J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcohol and local anesthetic effects on Na+-dependent Ca2+ fluxes in brain synaptic membrane vesicles.
    Michaelis ML; Michaelis EK
    Biochem Pharmacol; 1983 Mar; 32(6):963-9. PubMed ID: 6301510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibitory effect of Mn2+ on the ATP-dependent Ca2+ pump in rat brain synaptic plasma membrane vesicles.
    Low W; Brawarnick N; Rahamimoff H
    Biochem Pharmacol; 1991 Sep; 42(8):1537-43. PubMed ID: 1656989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+-Ca2+ exchange and calcium permeability in canine basolateral membrane vesicles: the effects of dibutyryl cAMP and specific inhibitors.
    Scoble JE; Cragoe EJ; Hruska KA
    Biochim Biophys Acta; 1988 Oct; 944(2):233-41. PubMed ID: 2846057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rate of Na+/Ca2+ exchange across the plasma membrane of synaptosomes measured using the fluorescence of chlorotetracycline. Implications to calcium homeostasis in synaptic terminals.
    García-Martín E; Gutiérrez-Merino C
    Biochim Biophys Acta; 1996 Apr; 1280(2):257-64. PubMed ID: 8639702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional importance of the synaptic plasma membrane calcium pump and sodium-calcium exchanger.
    Gill DL; Chueh SH; Whitlow CL
    J Biol Chem; 1984 Sep; 259(17):10807-13. PubMed ID: 6147347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Na(+)-Ca2+ exchange activity in plasma membrane vesicles from postmortem human brain.
    Hoel G; Michaelis ML; Freed WJ; Kleinman JE
    Neurochem Res; 1990 Sep; 15(9):881-7. PubMed ID: 1703282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of monovalent cations on Na+/Ca2+ exchange and ATP-dependent Ca2+ transport in synaptic plasma membranes.
    Coutinho OP; Carvalho AP; Carvalho CA
    J Neurochem; 1983 Sep; 41(3):670-6. PubMed ID: 6409998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of lanthanides as competitors of Na+ and K+ in occlusion sites of renal (Na+,K+)-ATPase.
    David P; Karlish SJ
    J Biol Chem; 1991 Aug; 266(23):14896-902. PubMed ID: 1651313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of cardenolids and sodium ion gradient on ATP-dependent Ca2+ accumulation in cardiac sarcolemmal vesicles].
    Preobrazhenskiĭ AN; Kupriianov VV; Saks VA; Grosse R; Spitzer E
    Biokhimiia; 1982 Jan; 47(1):126-36. PubMed ID: 6279179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+-Ca2+ exchange activity in rabbit lymphocyte plasma membranes.
    Ueda T
    Biochim Biophys Acta; 1983 Oct; 734(2):342-6. PubMed ID: 6615836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metal sites on sarcoplasmic reticulum membranes that bind lanthanide ions with the highest affinity are not the ATPase Ca2+ transport sites.
    Henao F; Orlowski S; Merah Z; Champeil P
    J Biol Chem; 1992 May; 267(15):10302-12. PubMed ID: 1534084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inhibition of Na-dependent Ca uptake by verapamil in synaptic plasma membrane vesicles.
    Erdreich A; Spanier R; Rahamimoff H
    Eur J Pharmacol; 1983 Jun; 90(2-3):193-202. PubMed ID: 6873181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative abilities of lanthanide ions La3+ and Tb3+ to substitute for Ca2+ in regulating phospholipid-sensitive Ca2+-dependent protein kinase and myosin light chain kinase.
    Mazzei GJ; Qi DF; Schatzman RC; Raynor RL; Turner RS; Kuo JF
    Life Sci; 1983 Jul; 33(2):119-29. PubMed ID: 6688112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.