BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6234073)

  • 1. Drug modulation of chromosomal protein subtypes during specific phases of the submaxillary cell cycle.
    Pipkin JL; Anson JF; Hinson WG; Burns ER
    Cell Biol Int Rep; 1984 Apr; 8(4):279-87. PubMed ID: 6234073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The modulating effect of isoproterenol on DNA replication and protein synthesis. Synthesis patterns of the HMG proteins from electrostatically sorted salivary gland nuclei during the in vivo cell cycle.
    Pipkin JL; Hinson WG; Hudson JL; Anson J; Pack LD
    Biochim Biophys Acta; 1981 Oct; 655(3):4213-1. PubMed ID: 6456768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is high mobility group protein 17 phosphorylated in vivo? Re-examination of the HeLa cell cycle data.
    Bhorjee JS; Mellon I; Kifle L
    Biochem Biophys Res Commun; 1983 Mar; 111(3):1001-7. PubMed ID: 6220712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential phosphorylation of nuclear nonhistone high mobility group proteins HMG 14 and HMG 17 during the cell cycle.
    Bhorjee JS
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6944-8. PubMed ID: 6458819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of isoproterenol and hydroxyurea on the presence of ubiquitin and protein A24 in the rat salivary gland.
    Pipkin J; Anson J; Hinson W; Hudson J
    Biochim Biophys Acta; 1982 Nov; 699(2):155-63. PubMed ID: 6295487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High mobility group nonhistone chromosomal proteins also exist in Tetrahymena.
    Hamana K; Iwai K
    J Biochem; 1979 Sep; 86(3):789-94. PubMed ID: 117005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoproterenol accelerates the postnatal differentiation of rat submandibular gland.
    Ekfors T; Chang WW; Bressler RS; Barka T
    Dev Biol; 1972 Sep; 29(1):38-47. PubMed ID: 5074212
    [No Abstract]   [Full Text] [Related]  

  • 8. HMG (high-mobility-group)-14/17-like proteins in calf thyroid. Thyrotropin-dependent phosphorylation and comparison with calf thymus proteins.
    Cooper E; Spaulding SW
    Biochem J; 1983 Dec; 215(3):643-9. PubMed ID: 6229249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The turnover of radiolabeled nuclear proteins in rats exposed to environmental and chemical stress.
    Pipkin JL; Anson JF; Hinson WG; Duffy PH; Burns ER; Casciano DA
    Toxicol Lett; 1987 Nov; 39(1):15-26. PubMed ID: 3672552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of non-histone chromosomal proteins HMG 14 and HMG 17 by polyacrylamide gel electrophoresis.
    Mathew CG; Goodwin GH; Johns EW
    J Chromatogr; 1980 Sep; 198(1):80-3. PubMed ID: 6448865
    [No Abstract]   [Full Text] [Related]  

  • 11. Purification and characterization of an inducible cysteine proteinase inhibitor from submandibular glands of isoproterenol-treated rats.
    Bedi GS
    Arch Biochem Biophys; 1989 Apr; 270(1):335-43. PubMed ID: 2784654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid induction of stress proteins in fetal mouse limb buds.
    Anson JF; Hinson WG; Pipkin JL; Kwarta RF; Hansen DK; Young JF; Burns ER; Casciano DA
    Dev Biol; 1987 Jun; 121(2):542-7. PubMed ID: 3582739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TSH stimulates 32P-labeling of thyroid nuclear HMG 14, a protein associated with actively transcribed chromatin.
    Cooper E; Palmer RJ; Spaulding SW
    Endocrinology; 1982 Apr; 110(4):1459-61. PubMed ID: 6460611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of Go cells: variations in the proliferative response following isoprenaline.
    Radley JM; Hodgson GS; Koschel KW
    Cell Tissue Kinet; 1976 Jul; 9(4):371-7. PubMed ID: 1277268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spleen cell phosphorylation of salt soluble nuclear protein from isoproterenol treated and sorted nuclei.
    Pipkin JL; Anson JF; Hinson WG; Schol H; Sheehan DM
    J Biochem; 1984 Feb; 95(2):323-33. PubMed ID: 6715302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopic alterations of submaxillary gland produced by isoproterenol.
    Takahama M; Barka T
    J Ultrastruct Res; 1967 Mar; 17(5):452-74. PubMed ID: 6025336
    [No Abstract]   [Full Text] [Related]  

  • 17. Age-dependent changes in the phosphorylation of nuclear proteins of submandibular glands in isoproterenol-treated rats.
    Ishikawa Y; Chen C; Amano I; Koda N; Ishida H
    Mech Ageing Dev; 1993 Aug; 70(1-2):127-37. PubMed ID: 8231284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gel electrophoresis of whole saliva and associated histologic changes in submandibular glands of isoproterenol-treated rats.
    Menaker L; Sheetz JH; Cobb CM; Navia JM
    Lab Invest; 1974 Mar; 30(3):341-9. PubMed ID: 4131783
    [No Abstract]   [Full Text] [Related]  

  • 19. [Comparative study of lymphocyte non-histone proteins].
    Durand JP; Bouchonneau M; Fortun Y; Pieri J
    C R Seances Soc Biol Fil; 1982; 176(1):14-22. PubMed ID: 6461390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in ploidy in the rat submaxillary gland induced by isoprenaline.
    Radley JM
    Exp Cell Res; 1967 Dec; 48(3):679-81. PubMed ID: 6082331
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.