BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 6234166)

  • 1. Characterization of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Receptor modulating.
    Smith JA; Uribe EG; Ball E; Heuer S; Lüttge U
    Eur J Biochem; 1984 Jun; 141(2):415-20. PubMed ID: 6234166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-bound ATPase of intact vacuoles and tonoplasts isolated from mature plant tissue.
    Lin W; Wagner GJ; Siegelman HW; Hind G
    Biochim Biophys Acta; 1977 Feb; 465(1):110-7. PubMed ID: 13830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid purification and reconstitution of a plant vacuolar ATPase using Triton X-114 fractionation: subunit composition and substrate kinetics of the H(+)-ATPase from the tonoplast of Kalanchoë daigremontiana.
    Warren M; Smith JA; Apps DK
    Biochim Biophys Acta; 1992 Apr; 1106(1):117-25. PubMed ID: 1533789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the ATPase of sugar-cane vacuoles in energization of the tonoplast.
    Thom M; Komor E
    Eur J Biochem; 1984 Jan; 138(1):93-9. PubMed ID: 6319133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATPase activity associated with isolated vacuoles of the crassulacean acid metabolism plant Kalanchoë daigremontiana.
    Smith JA; Uribe EG; Ball E; Lüttge U
    Planta; 1984 Oct; 162(4):299-304. PubMed ID: 24253162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae.
    Kakinuma Y; Ohsumi Y; Anraku Y
    J Biol Chem; 1981 Nov; 256(21):10859-63. PubMed ID: 6116710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and properties of H+-translocating, Mg2+-adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae.
    Uchida E; Ohsumi Y; Anraku Y
    J Biol Chem; 1985 Jan; 260(2):1090-5. PubMed ID: 2857169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased Vacuolar ATPase Activity Correlated With CAM Induction in Mesembryanthemum crystallinum and Kalanchoë blossfeldiana cv. Tom Thumb.
    Struve I; Weber A; Lüttge U; Ball E; Smith JA
    J Plant Physiol; 1985 Jan; 117(5):451-68. PubMed ID: 23195866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition.
    Lüttge U; Pfeifer T; Fischer-Schliebs E; Ratajczak R
    Plant Physiol; 2000 Nov; 124(3):1335-48. PubMed ID: 11080309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar malate uptake is mediated by an anion-selective inward rectifier.
    Hafke JB; Hafke Y; Smith JA; Lüttge U; Thiel G
    Plant J; 2003 Jul; 35(1):116-28. PubMed ID: 12834407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa.
    Bowman EJ; Bowman BJ
    J Bacteriol; 1982 Sep; 151(3):1326-37. PubMed ID: 6213602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination.
    Dietz KJ; Heber U; Mimura T
    Biochim Biophys Acta; 1998 Aug; 1373(1):87-92. PubMed ID: 9733929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase.
    Rodrigues CO; Scott DA; Docampo R
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):759-66. PubMed ID: 10359662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmalemma- and tonoplast-ATPase activity in mesophyll protoplasts, vacuoles and microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana.
    Balsamo RA; Uribe EG
    Planta; 1988 Feb; 173(2):190-6. PubMed ID: 24226399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and sequence analysis of a cDNA encoding the c subunit of a vacuolar-type H(+)-ATPase from the CAM plant Kalanchoë daigremontiana.
    Bartholomew DM; Rees DJ; Rambaut A; Smith JA
    Plant Mol Biol; 1996 May; 31(2):435-42. PubMed ID: 8756609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of Plasmodium falciparum digestive vacuoles and partial characterization of the vacuolar membrane ATPase.
    Choi I; Mego JL
    Mol Biochem Parasitol; 1988 Oct; 31(1):71-8. PubMed ID: 2972931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion-channel blockers.
    Pantoja O; Smith JA
    J Membr Biol; 2002 Mar; 186(1):31-42. PubMed ID: 11891587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mg-dependent ecto-ATPase activity in Leishmania tropica.
    Meyer-Fernandes JR; Dutra PM; Rodrigues CO; Saad-Nehme J; Lopes AH
    Arch Biochem Biophys; 1997 May; 341(1):40-6. PubMed ID: 9143351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an ecto-ATPase of Tritrichomonas foetus.
    Jesus JB; Lopes AH; Meyer-Fernandes JR
    Vet Parasitol; 2002 Jan; 103(1-2):29-42. PubMed ID: 11750998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP dependence of anion uptake by isolated vacuoles: requirement for excess Mg2+.
    Dietz KJ; Lang M; Schönrock M; Zink C
    Biochim Biophys Acta; 1990 May; 1024(2):318-22. PubMed ID: 2141282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.