These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6234214)

  • 1. Metabolic pathways of the fossil dinosaur bones Part II. Vascular canal in the communication system.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(1):33-41. PubMed ID: 6234214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic pathways of the fossil dinosaur bones. Part V. Morphological differentiation of osteocyte lacunae and bone canaliculi and their significance in the system of extracellular communication.
    Pawlicki R
    Folia Histochem Cytobiol; 1985; 23(3):165-74. PubMed ID: 4065383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic pathways of the fossil dinosaur bones. Part III. Intermediary and other osteocytes in the system of metabolic pathways of dinosaur bone.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(2):91-7. PubMed ID: 6469130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic pathways of the fossil dinosaur bones. Part I. Vascular communication system.
    Pawlicki R
    Folia Histochem Cytochem (Krakow); 1983; 21(3-4):253-61. PubMed ID: 6667913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathways of the fossil dinosaur bones. Part IV. Modes of linkage between osteocytes and a variety of nexuses of osteocytes processes.
    Pawlicki R
    Folia Histochem Cytobiol; 1984; 22(2):99-104. PubMed ID: 6469131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histochemical reactions for mucopolysaccharides in the dinosaur bone. Studies on Epon- and methacrylate-embedded semithin sections as well as on isolated osteocytes and ground sections of bone.
    Pawlicki R
    Acta Histochem; 1977; 58(1):75-8. PubMed ID: 140578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the fossil dinosaur bone in the scanning electron microscope.
    Pawlicki R
    Z Mikrosk Anat Forsch; 1975; 89(2):393-8. PubMed ID: 1224770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological differentiation of the fossil dinosaur bone cells. Light, transmission electron-, and scanning electron-microscopic studies.
    Pawlicki R
    Acta Anat (Basel); 1978; 100(4):411-8. PubMed ID: 345723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topochemical localization of lipids in dinosaur bone by means of Sudan B black.
    Pawlicki R
    Acta Histochem; 1977; 59(1):40-6. PubMed ID: 72479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood vessels and red blood cells preserved in dinosaur bones.
    Pawlicki R; Nowogrodzka-Zagórska M
    Ann Anat; 1998 Feb; 180(1):73-7. PubMed ID: 9488909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray microanalysis of fossil dinosaur bone: age differences in the calcium and phosphorus content of Gallimimus bullatus bones.
    Pawlicki R; Bolechała P
    Folia Histochem Cytobiol; 1987; 25(3-4):241-4. PubMed ID: 3450541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of fossil bone specimens for scanning electron microscopy.
    Pawlicki R
    Stain Technol; 1976 May; 51(3):147-52. PubMed ID: 779147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cretaceous dinosaur bone contains recent organic material and provides an environment conducive to microbial communities.
    Saitta ET; Liang R; Lau MC; Brown CM; Longrich NR; Kaye TG; Novak BJ; Salzberg SL; Norell MA; Abbott GD; Dickinson MR; Vinther J; Bull ID; Brooker RA; Martin P; Donohoe P; Knowles TD; Penkman KE; Onstott T
    Elife; 2019 Jun; 8():. PubMed ID: 31210129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fossil reptile embryo from the Middle Triassic of the Alps.
    Sander PM
    Science; 1988 Feb; 239(4841 Pt 1):780-3. PubMed ID: 3340859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dinosaurian soft tissues interpreted as bacterial biofilms.
    Kaye TG; Gaugler G; Sawlowicz Z
    PLoS One; 2008 Jul; 3(7):e2808. PubMed ID: 18665236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model.
    Kamioka H; Kameo Y; Imai Y; Bakker AD; Bacabac RG; Yamada N; Takaoka A; Yamashiro T; Adachi T; Klein-Nulend J
    Integr Biol (Camb); 2012 Oct; 4(10):1198-206. PubMed ID: 22858651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine structure of bone in dinosaurs, birds and mammals.
    Rensberger JM; Watabe M
    Nature; 2000 Aug; 406(6796):619-22. PubMed ID: 10949300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COLLAGEN IN FOSSIL BONE.
    WYCKOFF RW; WAGNER E; MATTER P; DOBERENZ AR
    Proc Natl Acad Sci U S A; 1963 Aug; 50(2):215-8. PubMed ID: 14065564
    [No Abstract]   [Full Text] [Related]  

  • 19. PALEONTOLOGY. Signs of ancient proteins seen inside dinosaur bones.
    Service RF
    Science; 2015 Jun; 348(6240):1184. PubMed ID: 26068816
    [No Abstract]   [Full Text] [Related]  

  • 20. Osteocytic osteolysis in a cretaceous reptile.
    Belanger LF
    Rev Can Biol; 1977 Mar; 36(1):71-3. PubMed ID: 337412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.