These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 6234446)

  • 1. Excitotoxic models for neurodegenerative disorders.
    Schwarcz R; Foster AC; French ED; Whetsell WO; Köhler C
    Life Sci; 1984 Jul; 35(1):19-32. PubMed ID: 6234446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain.
    Schwarcz R; Whetsell WO; Mangano RM
    Science; 1983 Jan; 219(4582):316-8. PubMed ID: 6849138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 1993 Upjohn Award Lecture. Quinolinic acid induced brain neurotransmitter deficits: modulation by endogenous excitotoxin antagonists.
    Jhamandas KH; Boegman RJ; Beninger RJ
    Can J Physiol Pharmacol; 1994 Dec; 72(12):1473-82. PubMed ID: 7736338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential vulnerability of central neurons of the rat to quinolinic acid.
    Schwarcz R; Köhler C
    Neurosci Lett; 1983 Jul; 38(1):85-90. PubMed ID: 6225037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH-diaphorase reactive neurons of the rabbit retina: differential sensitivity to excitotoxins and unusual morphologic features.
    Sagar SM
    J Comp Neurol; 1990 Oct; 300(3):309-19. PubMed ID: 2148324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparing of cholinergic neurons following quinolinic acid lesions of the rat striatum.
    Davies SW; Roberts PJ
    Neuroscience; 1988 Aug; 26(2):387-93. PubMed ID: 2971892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevation of Met-enkephalin-like immunoreactivity in the rat striatum and globus pallidus following the focal injection of excitotoxins.
    Ruzicka BB; Jhamandas K
    Brain Res; 1990 Dec; 536(1-2):227-39. PubMed ID: 2150770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins.
    Waldvogel HJ; Faull RL; Williams MN; Dragunow M
    Brain Res; 1991 Apr; 546(2):329-35. PubMed ID: 1829975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions.
    Beal MF; Kowall NW; Swartz KJ; Ferrante RJ; Martin JB
    Synapse; 1989; 3(1):38-47. PubMed ID: 2563916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitotoxins, aging, and environmental neurotoxins: implications for understanding human neurodegenerative diseases.
    Dawson R; Beal MF; Bondy SC; Di Monte DA; Isom GE
    Toxicol Appl Pharmacol; 1995 Sep; 134(1):1-17. PubMed ID: 7676443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short- and long-term consequences of intracranial injections of the excitotoxin, quinolinic acid, as evidenced by GFA immunohistochemistry of astrocytes.
    Björklund H; Olson L; Dahl D; Schwarcz R
    Brain Res; 1986 Apr; 371(2):267-77. PubMed ID: 2938667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotoxic effect induced by quinolinic acid in dissociated cell culture of mouse hippocampus.
    Khaspekov L; Kida E; Victorov I; Mossakowski MJ
    J Neurosci Res; 1989 Feb; 22(2):150-7. PubMed ID: 2523487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate-mediated excitotoxic death of cultured striatal neurons is mediated by non-NMDA receptors.
    Chen Q; Harris C; Brown CS; Howe A; Surmeier DJ; Reiner A
    Exp Neurol; 1995 Dec; 136(2):212-24. PubMed ID: 7498411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATP as a marker of excitotoxin-induced nerve cell death in vivo.
    Vezzani A; Sangalli L; Wu HQ; Schwarcz R
    J Neural Transm; 1987; 70(3-4):349-56. PubMed ID: 2960779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus.
    Ganong AH; Cotman CW
    J Pharmacol Exp Ther; 1986 Jan; 236(1):293-9. PubMed ID: 2867215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The quinolinic acid hypothesis in Huntington's chorea.
    Bruyn RP; Stoof JC
    J Neurol Sci; 1990 Jan; 95(1):29-38. PubMed ID: 2159984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nerve cell death induced in vivo by kainic acid and quinolinic acid does not involve apoptosis.
    Ignatowicz E; Vezzani AM; Rizzi M; D'Incalci M
    Neuroreport; 1991 Nov; 2(11):651-4. PubMed ID: 1839770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of kainic acid and other excitotoxins in the rat superior colliculus: relations to glutamatergic afferents.
    Fosse VM; Fonnum F
    Brain Res; 1986 Sep; 383(1-2):28-37. PubMed ID: 2876752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitotoxic mechanisms of epileptic brain damage.
    Olney JW; Collins RC; Sloviter RS
    Adv Neurol; 1986; 44():857-77. PubMed ID: 3706027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.