These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Nitrogen fixation associated with grasses in Oregon. Nelson AD; Barber LE; Tjepkema J; Russell SA; Powelson R; Evans HJ Can J Microbiol; 1976 Apr; 22(4):523-30. PubMed ID: 1260544 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a nitrogen-fixing bacterial strain from the roots of Digitaria sanguinalis. Barber LE; Evans HJ Can J Microbiol; 1976 Feb; 22(2):254-60. PubMed ID: 4212 [TBL] [Abstract][Full Text] [Related]
5. Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum. Barber LE; Tjepkema JD; Russell SA; Evans HJ Appl Environ Microbiol; 1976 Jul; 32(1):108-13. PubMed ID: 970933 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen fixation (acetylene reduction) by Klebsiella pneumoniae in association with 'Park' Kentucky bluegrass (Poa pratensis L.). Wood LV; Klucas RV; Shearman RC Can J Microbiol; 1981 Jan; 27(1):52-6. PubMed ID: 7011516 [TBL] [Abstract][Full Text] [Related]
7. Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Zuberer DA; Silver WS Appl Environ Microbiol; 1978 Mar; 35(3):567-75. PubMed ID: 637550 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of N Xu J; Kloepper JW; Huang P; McInroy JA; Hu CH J Basic Microbiol; 2018 May; 58(5):459-471. PubMed ID: 29473969 [TBL] [Abstract][Full Text] [Related]
9. Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Kim C; Kecskés ML; Deaker RJ; Gilchrist K; New PB; Kennedy IR; Kim S; Sa T Can J Microbiol; 2005 Nov; 51(11):948-56. PubMed ID: 16333334 [TBL] [Abstract][Full Text] [Related]
10. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Rennie RJ Can J Microbiol; 1981 Jan; 27(1):8-14. PubMed ID: 7214234 [TBL] [Abstract][Full Text] [Related]
11. Acetylene reduction by soil cores of maize and sorghum in Brazil. Tjepkema J; Van Berkum P Appl Environ Microbiol; 1977 Mar; 33(3):626-9. PubMed ID: 16345217 [TBL] [Abstract][Full Text] [Related]
12. Acetylene reduction (dinitrogen fixation) and nitrification in soil as affected by the structural aggregate size. Skrdleta V; Hyndráková A; Nĕmocová M Folia Microbiol (Praha); 1979; 24(5):403-7. PubMed ID: 294405 [TBL] [Abstract][Full Text] [Related]
16. Acetylene reduction assay for nitrogenase activity in root nodules under salinity stress. Gu L; Loya JR; Subramanian S; Graham C; Zhou R Methods Enzymol; 2023; 683():253-264. PubMed ID: 37087191 [TBL] [Abstract][Full Text] [Related]
17. Enumeration and identification of nitrogen-fixing bacteria from forage grass roots. Wright SF; Weaver RW Appl Environ Microbiol; 1981 Jul; 42(1):97-101. PubMed ID: 16345819 [TBL] [Abstract][Full Text] [Related]
18. Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Whiting GJ; Gandy EL; Yoch DC Appl Environ Microbiol; 1986 Jul; 52(1):108-13. PubMed ID: 3089156 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Eskew DL; Focht DD; Ting IP Appl Environ Microbiol; 1977 Nov; 34(5):582-5. PubMed ID: 22311 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the Subpolar Urals (European North-East Russia). Patova E; Sivkov M; Patova A FEMS Microbiol Ecol; 2016 Sep; 92(9):. PubMed ID: 27306556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]