These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 623466)

  • 41. Studies on an acetate-fermenting strain of Methanosarcina.
    Mah RA; Smith MR; Baresi L
    Appl Environ Microbiol; 1978 Jun; 35(6):1174-84. PubMed ID: 677880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Support media can steer methanogenesis in the presence of phenol through biotic and abiotic effects.
    Poirier S; Déjean S; Chapleur O
    Water Res; 2018 Sep; 140():24-33. PubMed ID: 29684699
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini.
    Schnell S; Bak F; Pfennig N
    Arch Microbiol; 1989; 152(6):556-63. PubMed ID: 2589921
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum.
    Weimer PJ; Zeikus JG
    Appl Environ Microbiol; 1977 Feb; 33(2):289-97. PubMed ID: 848953
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2.
    Hofrichter M; Bublitz F; Fritsche W
    J Basic Microbiol; 1994; 34(3):163-72. PubMed ID: 8071803
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process.
    Ueno Y; Tatara M; Fukui H; Makiuchi T; Goto M; Sode K
    Bioresour Technol; 2007 Jul; 98(9):1861-5. PubMed ID: 16919939
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Degradation of mono-fluorophenols by an acclimated activated sludge.
    Chaojie Z; Qi Z; Ling C; Yuan Y; Hui Y
    Biodegradation; 2007 Feb; 18(1):51-61. PubMed ID: 16819592
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diversity in phenol-metabolizing capability of 809 strains of micromycetes.
    Krivobok S; Benoit-Guyod JL; Seigle-Murandi F; Steiman R; Thiault GA
    New Microbiol; 1994 Jan; 17(1):51-60. PubMed ID: 8127230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elucidation of the thermophilic phenol biodegradation pathway via benzoate during the anaerobic digestion of municipal solid waste.
    Hoyos-Hernandez C; Hoffmann M; Guenne A; Mazeas L
    Chemosphere; 2014 Feb; 97():115-9. PubMed ID: 24238916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissimilatory metabolism of nitrate by the rumen microbiota.
    Jones GA
    Can J Microbiol; 1972 Dec; 18(12):1783-7. PubMed ID: 4675328
    [No Abstract]   [Full Text] [Related]  

  • 51. Anaerobic biodegradation of soybean biodiesel and diesel blends under methanogenic conditions.
    Wu S; Yassine MH; Suidan MT; Venosa AD
    Water Res; 2015 Dec; 87():395-402. PubMed ID: 26454635
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Degradation of furfural (2-furaldehyde) to methane and carbon dioxide by an anaerobic consortium.
    Rivard CJ; Grohmann K
    Appl Biochem Biotechnol; 1991; 28-29():285-95. PubMed ID: 1929367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.
    Ni BJ; Batstone D; Zhao BH; Yu HQ
    Environ Sci Technol; 2015 Aug; 49(15):9159-67. PubMed ID: 26147721
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium.
    Latham MJ; Wolin MJ
    Appl Environ Microbiol; 1977 Sep; 34(3):297-301. PubMed ID: 562131
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
    Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H
    Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relative abundance and the relationships between aniline, phenol and catechol degraders in fresh water.
    Nasu M; Goonewardena N; Kogame R; Yamaguchi N; Tani K; Kondo M
    Biomed Environ Sci; 1993 Mar; 6(1):95-101. PubMed ID: 8476539
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies.
    Jiménez N; Richnow HH; Vogt C; Treude T; Krüger M
    J Mol Microbiol Biotechnol; 2016; 26(1-3):227-42. PubMed ID: 26959375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Methanogenesis: surprising molecules, microorganisms and ecosystems.
    Vogels GD; van der Drift C; Stumm CK; Keltjens JT; Zwart KB
    Antonie Van Leeuwenhoek; 1984; 50(5-6):557-67. PubMed ID: 6442121
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characteristics of yeasts isolated from phenol- and catechol-adapted activated sludges.
    Rao BV; Bhat JV
    Antonie Van Leeuwenhoek; 1971; 37(3):303-12. PubMed ID: 5315724
    [No Abstract]   [Full Text] [Related]  

  • 60. Influence of particle size distribution on anaerobic degradation of phenol and analysis of methanogenic microbial community.
    Wang J; Wu B; Sierra JM; He C; Hu Z; Wang W
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):10391-10403. PubMed ID: 31939015
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.