BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 6234890)

  • 1. Activation of nit-1 nitrate reductase by W-formate dehydrogenase.
    Deaton JC; Solomon EI; Durfor CN; Wetherbee PJ; Burgess BK; Jacobs DB
    Biochem Biophys Res Commun; 1984 Jun; 121(3):1042-7. PubMed ID: 6234890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and spectroscopic properties of reduced Mo and W formate dehydrogenase from C. thermoaceticum.
    Durfor CN; Wetherbee PJ; Deaton JC; Solomon EI
    Biochem Biophys Res Commun; 1983 Aug; 115(1):61-7. PubMed ID: 6311213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase.
    Pienkos PT; Shah VK; Brill WJ
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5468-71. PubMed ID: 146198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.
    Moura JJ; Brondino CD; Trincão J; Romão MJ
    J Biol Inorg Chem; 2004 Oct; 9(7):791-9. PubMed ID: 15311335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formate dehydrogenase molybdenum and tungsten sites--observation by EXAFS of structural differences.
    Cramer SP; Liu CL; Mortenson LE; Spence JT; Liu SM; Yamamoto I; Ljungdahl LG
    J Inorg Biochem; 1985 Feb; 23(2):119-24. PubMed ID: 3973583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: nitrate reductase from a Neurospora mutant and a component of molybdenum-enzymes.
    Nason A; Lee KY; Pan SS; Ketchum PA; Lamberti A; DeVries J
    Proc Natl Acad Sci U S A; 1971 Dec; 68(12):3242-6. PubMed ID: 4399835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.
    Scott RH; DeMoss JA
    J Bacteriol; 1976 Apr; 126(1):478-86. PubMed ID: 770433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis.
    Johnson ME; Rajagopalan KV
    J Bacteriol; 1987 Jan; 169(1):117-25. PubMed ID: 2947896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A common pathway for the activation of several molybdoenzymes in Escherichia coli K12.
    Giordano G; Violet M; Medani CL; Pommier J
    Biochim Biophys Acta; 1984 Apr; 798(2):216-25. PubMed ID: 6370312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro reconstitution of nitrate reductase activity of the Neurospora crassa mutant nit-1: specific incorporation of molybdopterin.
    Kramer S; Hageman RV; Rajagopalan KV
    Arch Biochem Biophys; 1984 Sep; 233(2):821-9. PubMed ID: 6237611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molybdopterin cofactor from Methanobacterium formicicum formate dehydrogenase.
    May HD; Schauer NL; Ferry JG
    J Bacteriol; 1986 May; 166(2):500-4. PubMed ID: 3700335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.
    Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ
    Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salmonella typhimurium mutants defective in the formate dehydrogenase linked to nitrate reductase.
    Barrett EL; Riggs DL
    J Bacteriol; 1982 Feb; 149(2):554-60. PubMed ID: 7035433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tungsten, the surprisingly positively acting heavy metal element for prokaryotes.
    Andreesen JR; Makdessi K
    Ann N Y Acad Sci; 2008 Mar; 1125():215-29. PubMed ID: 18096847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor.
    Saracino L; Violet M; Boxer DH; Giordano G
    Eur J Biochem; 1986 Aug; 158(3):483-90. PubMed ID: 3525161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii.
    Mouncey NJ; Mitchenall LA; Pau RN
    J Bacteriol; 1995 Sep; 177(18):5294-302. PubMed ID: 7665518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of molybdate and tungstate on expression levels and biochemical characteristics of formate dehydrogenases produced by Desulfovibrio alaskensis NCIMB 13491.
    Mota CS; Valette O; González PJ; Brondino CD; Moura JJ; Moura I; Dolla A; Rivas MG
    J Bacteriol; 2011 Jun; 193(12):2917-23. PubMed ID: 21478344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of molybdoproteins in Clostridium pasteurianum.
    Hinton SM; Mortenson LE
    J Bacteriol; 1985 May; 162(2):477-84. PubMed ID: 3857223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship of Mo, molybdopterin, and the cyanolyzable sulfur in the Mo cofactor.
    Wahl RC; Hageman RV; Rajagopalan KV
    Arch Biochem Biophys; 1984 Apr; 230(1):264-73. PubMed ID: 6231887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.