These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6234947)

  • 1. Undirectional calcium and nucleotide fluxes in cardiac sarcoplasmic reticulum. II. Experimental results.
    Feher JJ; Briggs FN
    Biophys J; 1984 Jun; 45(6):1135-44. PubMed ID: 6234947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unidirectional calcium and nucleotide fluxes in sarcoplasmic reticulum. I. Interpretation of flux ratios for different reaction schemes.
    Feher JJ
    Biophys J; 1984 Jun; 45(6):1125-33. PubMed ID: 6234946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of adenosine diphosphate on Ca2+ fluxes and Ca2+ accumulation of sarcoplasmic reticulum.
    Lau YH
    Biochim Biophys Acta; 1983 May; 730(2):276-84. PubMed ID: 6221760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the steady-state calcium fluxes in skeletal sarcoplasmic reticulum vesicles. Role of the Ca2+ pump.
    Soler F; Teruel JA; Fernandez-Belda F; Gomez-Fernandez JC
    Eur J Biochem; 1990 Sep; 192(2):347-54. PubMed ID: 2145156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca(2+) transport of Ca(2+)-ATPase of the sarcoplasmic reticulum in an ADP-sensitive phosphoenzyme state.
    Ushimaru M; Fukushima Y
    J Biochem Mol Biol Biophys; 2002 Apr; 6(2):101-6. PubMed ID: 12186764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum.
    Sumbilla C; Lewis D; Hammerschmidt T; Inesi G
    J Biol Chem; 2002 Apr; 277(16):13900-6. PubMed ID: 11844792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calmodulin and free oxygen radicals interaction with steady-state calcium accumulation and passive calcium permeability of cardiac sarcoplasmic reticulum.
    Okabe E; Sugihara M; Tanaka K; Sasaki H; Ito H
    J Pharmacol Exp Ther; 1989 Jul; 250(1):286-92. PubMed ID: 2526216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reversal of the calcium pump of cardiac sarcoplasmic reticulum.
    Suko J; Hellmann G; Winkler F
    Basic Res Cardiol; 1977; 72(2-3):147-52. PubMed ID: 140656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J; Hasselbach W
    Eur J Biochem; 1976 Apr; 64(1):123-30. PubMed ID: 6267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local ATP regeneration is important for sarcoplasmic reticulum Ca2+ pump function.
    Korge P; Campbell KB
    Am J Physiol; 1994 Aug; 267(2 Pt 1):C357-66. PubMed ID: 8074172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ca2+ permeability of sarcoplasmic reticulum vesicles. II. Ca2+ efflux in the energized state of the calcium pump.
    Gerdes U; Møller JV
    Biochim Biophys Acta; 1983 Oct; 734(2):191-200. PubMed ID: 6225460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ryanodine on oxygen free radical-induced dysfunction of cardiac sarcoplasmic reticulum.
    Okabe E; Kuse K; Sekishita T; Suyama N; Tanaka K; Ito H
    J Pharmacol Exp Ther; 1991 Mar; 256(3):868-75. PubMed ID: 1848630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of passive efflux pathways in determining steady-state loading in canine cardiac sarcoplasmic reticulum vesicles.
    Feher JJ; Alderson BH; Lipford GB
    Prog Clin Biol Res; 1988; 252():149-54. PubMed ID: 2450359
    [No Abstract]   [Full Text] [Related]  

  • 15. [Steady-state calcium accumulation and its reduction by caffeine in sarcoplasmic reticulum from masseter muscle].
    Saito G
    Kanagawa Shigaku; 1989 Jun; 24(1):169-81. PubMed ID: 2562274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of oxygen free radicals on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum.
    Okabe E; Odajima C; Taga R; Kukreja RC; Hess ML; Ito H
    Mol Pharmacol; 1988 Sep; 34(3):388-94. PubMed ID: 2843752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halothane and isoflurane effects on Ca2+ fluxes of isolated myocardial sarcoplasmic reticulum.
    Frazer MJ; Lynch C
    Anesthesiology; 1992 Aug; 77(2):316-23. PubMed ID: 1386498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of calcium load on the calcium permeability of sarcoplasmic reticulum.
    Feher JJ; Briggs FN
    J Biol Chem; 1982 Sep; 257(17):10191-9. PubMed ID: 6809746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determinants of calcium loading at steady state in sarcoplasmic reticulum.
    Feher JJ; Briggs FN
    Biochim Biophys Acta; 1983 Jan; 727(2):389-402. PubMed ID: 6220742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport.
    Xu KY; Zweier JL; Becker LC
    Circ Res; 1995 Jul; 77(1):88-97. PubMed ID: 7788886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.