These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 623496)
1. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Badziong W; Thauer RK; Zeikus JG Arch Microbiol; 1978 Jan; 116(1):41-9. PubMed ID: 623496 [No Abstract] [Full Text] [Related]
2. Growth of desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Bryant MP; Campbell LL; Reddy CA; Crabill MR Appl Environ Microbiol; 1977 May; 33(5):1162-9. PubMed ID: 879775 [TBL] [Abstract][Full Text] [Related]
3. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Badziong W; Thauer RK Arch Microbiol; 1978 May; 117(2):209-14. PubMed ID: 28099 [No Abstract] [Full Text] [Related]
4. [Carbon and energy sources of biosynthesis in sulfate reducing bacteria]. Sorokin IuI Mikrobiologiia; 1966; 35(5):761-6. PubMed ID: 6002773 [No Abstract] [Full Text] [Related]
5. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone. Reichenbecher W; Schink B Arch Microbiol; 1997 Oct; 168(4):338-44. PubMed ID: 9297472 [TBL] [Abstract][Full Text] [Related]
6. Some observations on growth and hydrogen uptake by Desulfovibrio vulgaris. Khosrovi B; Macpherson R; Miller JD Arch Mikrobiol; 1971; 80(4):324-37. PubMed ID: 5132464 [No Abstract] [Full Text] [Related]
7. Sulfate reduction by a Desulfovibrio species isolated from sheep rumen. Huisingh J; McNeill JJ; Matrone G Appl Microbiol; 1974 Sep; 28(3):489-97. PubMed ID: 4472525 [TBL] [Abstract][Full Text] [Related]
10. Desulfovibrio of the sheep rumen. Howard BH; Hungate RE Appl Environ Microbiol; 1976 Oct; 32(4):598-602. PubMed ID: 984832 [TBL] [Abstract][Full Text] [Related]
11. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study. Nagpal S; Chuichulcherm S; Livingston A; Peeva L Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550 [TBL] [Abstract][Full Text] [Related]
12. Microbial reduction of sulfur dioxide with pretreated sewage sludge and elemental hydrogen as electron donors. Deshmane V; Lee CM; Sublette KL Appl Biochem Biotechnol; 1993; 39-40():739-52. PubMed ID: 8323272 [TBL] [Abstract][Full Text] [Related]
13. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Cappenberg TE Antonie Van Leeuwenhoek; 1974; 40(2):297-306. PubMed ID: 4365468 [No Abstract] [Full Text] [Related]
14. Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Sass H; Berchtold M; Branke J; König H; Cypionka H; Babenzien HD Syst Appl Microbiol; 1998 Jun; 21(2):212-9. PubMed ID: 9704109 [TBL] [Abstract][Full Text] [Related]
15. Growth of sulphate-reducing bacteria by fumarate dismutation. Miller JD; Wakerley DS J Gen Microbiol; 1966 Apr; 43(1):101-7. PubMed ID: 5953822 [No Abstract] [Full Text] [Related]
16. Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Arakaki A; Takeyama H; Tanaka T; Matsunaga T Appl Biochem Biotechnol; 2002; 98-100():833-40. PubMed ID: 12018305 [TBL] [Abstract][Full Text] [Related]
17. Isolation of highly performant sulfate reducers from sulfate-rich environments. Hiligsmann S; Jacques P; Thonart P Biodegradation; 1998; 9(3-4):285-92. PubMed ID: 10022071 [TBL] [Abstract][Full Text] [Related]