BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1802 related articles for article (PubMed ID: 6235151)

  • 1. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing.
    Henikoff S
    Gene; 1984 Jun; 28(3):351-9. PubMed ID: 6235151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ordered deletions for DNA sequencing and in vitro mutagenesis by polymerase extension and exonuclease III gapping of circular templates.
    Henikoff S
    Nucleic Acids Res; 1990 May; 18(10):2961-6. PubMed ID: 2190184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonrandom DNA sequencing of exonuclease III-deleted complementary DNA.
    Okita TW
    Anal Biochem; 1985 Jan; 144(1):207-11. PubMed ID: 2984956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing nested deletions for use in DNA sequencing.
    Slatko B; Heinrich P; Nixon BT; Voytas D
    Curr Protoc Mol Biol; 2001 May; Chapter 7():Unit7.2. PubMed ID: 18265265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DNA fragment with an alpha-phosphorothioate nucleotide at one end is asymmetrically blocked from digestion by exonuclease III and can be replicated in vivo.
    Putney SD; Benkovic SJ; Schimmel PR
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7350-4. PubMed ID: 6278470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of lambda exonuclease for efficient oligonucleotide-mediated site-directed deletion and point mutation of double-stranded DNA.
    Palermo DP; Hess GF
    DNA; 1987 Jun; 6(3):273-9. PubMed ID: 2954801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multienzyme nested deletion (MEND) technique for creation of unidirectional deletions in cloned DNA.
    Shearer G
    Anal Biochem; 1994 Nov; 223(1):105-10. PubMed ID: 7695084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the lac repressor in constructing sequential deletions and a new sequencing vector.
    Johnson DF; Nierlich DP; Lusis AJ
    Gene; 1990 Sep; 94(1):9-14. PubMed ID: 2172094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple strategy for sequencing cDNA clones.
    Zeng LW; Kreitman M
    Biotechniques; 1996 Sep; 21(3):446-52. PubMed ID: 8879583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequencing long DNA fragments cloned in bacteriophage M13 by using internal primers. The sequence analysis of a yeast DNA fragment containing a replication origin.
    Hindley J; Phear GA
    Biochem J; 1981 Dec; 199(3):819-23. PubMed ID: 6280678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A directed nucleotide-sequencing approach for single-stranded vectors based on recloning intermediates of a progressive DNA synthesis reaction.
    Burton FH; Loeb DD; McGraw RA; Edgell MH; Hutchison CA
    Gene; 1988 Jul; 67(2):159-68. PubMed ID: 3169575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder.
    van Oijen AM; Blainey PC; Crampton DJ; Richardson CC; Ellenberger T; Xie XS
    Science; 2003 Aug; 301(5637):1235-8. PubMed ID: 12947199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the interaction of lambda exonuclease with the ends of DNA.
    Mitsis PG; Kwagh JG
    Nucleic Acids Res; 1999 Aug; 27(15):3057-63. PubMed ID: 10454600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct cloning of a long restriction fragment aided with a jumping clone.
    Matsuoka T; Kato H; Hashimoto K; Kurosawa Y
    Gene; 1991 Oct; 107(1):27-35. PubMed ID: 1660429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved strategy for rapid direct sequencing of both strands of long DNA molecules cloned in a plasmid.
    Guo LH; Yang RC; Wu R
    Nucleic Acids Res; 1983 Aug; 11(16):5521-40. PubMed ID: 6310503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time observation of a single DNA digestion by lambda exonuclease under a fluorescence microscope field.
    Matsuura S; Komatsu J; Hirano K; Yasuda H; Takashima K; Katsura S; Mizuno A
    Nucleic Acids Res; 2001 Aug; 29(16):E79. PubMed ID: 11504887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of long-distance PCR to restriction site mapping of a cloned DNA fragment on the lambda EMBL3 phage vector.
    Machida M; Manabe M; Yasukawa M; Jigami Y
    Biosci Biotechnol Biochem; 1996 Jun; 60(6):1011-3. PubMed ID: 8695900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases.
    Cowart M; Gibson KJ; Allen DJ; Benkovic SJ
    Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [C1 and cro repressors of lambda phages. I. Construction of vectors for expression of cro repressor of bacteriophage lambda imm434].
    Bespalova IN; Rubtsov PM; Kirpichnikov MP; Skriabin KG
    Mol Biol (Mosk); 1984; 18(1):30-8. PubMed ID: 6323976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time direct observation of single-molecule DNA hydrolysis by exonuclease III.
    Kurita H; Inaishi K; Torii K; Urisu M; Nakano M; Katsura S; Mizuno A
    J Biomol Struct Dyn; 2008 Apr; 25(5):473-80. PubMed ID: 18282002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 91.