BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 6235215)

  • 1. Energy interconversion in sarcoplasmic reticulum vesicles in the presence of Ca2+ and Sr2+ gradients.
    Guimarães-Motta H; Sande-Lemos MP; de Meis L
    J Biol Chem; 1984 Jul; 259(14):8699-705. PubMed ID: 6235215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of arsenate on the Ca2+ ATPase of sarcoplasmic reticulum.
    Alves EW; de Meis L
    Eur J Biochem; 1987 Aug; 166(3):647-51. PubMed ID: 2956098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles.
    Souza DO; de Meis L
    J Biol Chem; 1976 Oct; 251(20):6355-9. PubMed ID: 185211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetics for the phosphoryl transfer steps of the sarcoplasmic reticulum calcium ATPase are the same with strontium and with calcium bound to the transport sites.
    Fujimori T; Jencks WP
    J Biol Chem; 1992 Sep; 267(26):18466-74. PubMed ID: 1388154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of the sarcoplasmic reticulum calcium adenosinetriphosphatase with adenosine 5'-triphosphate and Ca2+ that are not satisfactorily described by an E1-E2 model.
    Stahl N; Jencks WP
    Biochemistry; 1987 Dec; 26(24):7654-67. PubMed ID: 2962640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion.
    Fujimori T; Jencks WP
    J Biol Chem; 1990 Sep; 265(27):16262-70. PubMed ID: 2144527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of compound 48/80 and ruthenium red on the Ca2+-ATPase of sarcoplasmic reticulum.
    Alves EW; de Meis L
    J Biol Chem; 1986 Dec; 261(36):16854-9. PubMed ID: 2430971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between Ca2+ uptake, Ca2+ efflux and phosphoenzyme level in sarcoplasmic-reticulum vesicles.
    Benech JC; Galina A; de Meis L
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):427-32. PubMed ID: 1826078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-Ca2+ exchange catalyzed by the membrane-bound Ca2+, Mg2+-ATPase of sarcoplasmic reticulum vesicles.
    Kanazawa T; Takakuwa Y
    Curr Top Cell Regul; 1984; 24():423-34. PubMed ID: 6149890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of calcium from the phosphorylated calcium-transporting adenosine triphosphatase of sarcoplasmic reticulum: kinetic equivalence of the calcium ions bound to the phosphorylated enzyme.
    Hanel AM; Jencks WP
    Biochemistry; 1991 Nov; 30(47):11320-30. PubMed ID: 1835656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative effects of Ca2+ and Sr2+ on sarcoplasmic reticulum adenosine triphosphatase.
    Holguín JA
    Arch Biochem Biophys; 1986 Nov; 251(1):9-16. PubMed ID: 3024577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of two Sr2+ ions changes the chemical specificities for phosphorylation of the sarcoplasmic reticulum calcium ATPase through a stepwise mechanism.
    Fujimori T; Jencks WP
    J Biol Chem; 1992 Sep; 267(26):18475-87. PubMed ID: 1388155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump.
    de Meis L
    J Biol Chem; 1976 Apr; 251(7):2055-62. PubMed ID: 5437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Mg2+ in the Ca2+-Ca2+ exchange mediated by the membrane-bound (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum vesicles.
    Takakuwa Y; Kanazawa T
    J Biol Chem; 1982 Sep; 257(18):10770-5. PubMed ID: 6125517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP regulation of calcium transport in back-inhibited sarcoplasmic reticulum vesicles.
    de Meis L; Sorenson MM
    Biochim Biophys Acta; 1989 Sep; 984(3):373-8. PubMed ID: 2528377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On a possible mechanism of energy conservation in sarcoplasmic reticulum membrane.
    Carvalho MG; de Souza DG; de Meis L
    J Biol Chem; 1976 Jun; 251(12):3629-36. PubMed ID: 932000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of K+ on phosphorylation of the sarcoplasmic reticulum ATPase by either Pi or ATP.
    Chaloub RM; de Meis L
    J Biol Chem; 1980 Jul; 255(13):6168-72. PubMed ID: 6446554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient state kinetic studies of phosphorylation by ATP and Pi of the calcium-dependent ATPase from sarcoplasmic reticulum.
    Vieyra A; Scofano HM; Guimarães-Motta H; Tume RK; de Meis L
    Biochim Biophys Acta; 1979 Jun; 568(2):437-45. PubMed ID: 158391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase.
    Myung J; Jencks WP
    Biochemistry; 1995 Mar; 34(9):3077-83. PubMed ID: 7893720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stoichiometries of calcium and strontium transport coupled to ATP and acetyl phosphate hydrolysis by skeletal sarcoplasmic reticulum.
    Berman MC; King SB
    Biochim Biophys Acta; 1990 Nov; 1029(2):235-40. PubMed ID: 2245209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.