BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6235215)

  • 21. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation.
    Hawkins C; Xu A; Narayanan N
    Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca2+ translocation and catalytic activity of the sarcoplasmic reticulum ATPase. Modulation by ATP, Ca2+, and Pi.
    Galina A; de Meis L
    J Biol Chem; 1991 Sep; 266(27):17978-82. PubMed ID: 1833389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of calcium.
    Carvalho-Alves PC; Scofano HM
    J Biol Chem; 1987 May; 262(14):6610-4. PubMed ID: 2952654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ratio of hydrolysis and synthesis of ATP by the sarcoplasmic reticulum ATPase in the absence of a Ca2+ concentration gradient.
    Scofano HM; de Meis L
    J Biol Chem; 1981 May; 256(9):4282-5. PubMed ID: 6111563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lumenal and cytoplasmic binding sites for calcium on the calcium ATPase of sarcoplasmic reticulum are different and independent.
    Myung J; Jencks WP
    Biochemistry; 1994 Jul; 33(29):8775-85. PubMed ID: 8038168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variable stoichiometric efficiency of Ca2+ and Sr2+ transport by the sarcoplasmic reticulum ATPase.
    Yu X; Inesi G
    J Biol Chem; 1995 Mar; 270(9):4361-7. PubMed ID: 7876199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The two calcium ions initially bound to nonphosphorylated sarcoplasmic reticulum Ca(2+)-ATPase can no longer be kinetically distinguished when they dissociate from phosphorylated ATPase toward the lumen.
    Orlowski S; Champeil P
    Biochemistry; 1991 Nov; 30(47):11331-42. PubMed ID: 1835657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quercetin interaction with the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum.
    Shoshan V; MacLennan DH
    J Biol Chem; 1981 Jan; 256(2):887-92. PubMed ID: 6108961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the steady-state calcium fluxes in skeletal sarcoplasmic reticulum vesicles. Role of the Ca2+ pump.
    Soler F; Teruel JA; Fernandez-Belda F; Gomez-Fernandez JC
    Eur J Biochem; 1990 Sep; 192(2):347-54. PubMed ID: 2145156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of nonsolubilizing and solubilizing concentrations of Triton X-100 on Ca2+ binding and Ca2+-ATPase activity of sarcoplasmic reticulum.
    McIntosh DB; Davidson GA
    Biochemistry; 1984 Apr; 23(9):1959-65. PubMed ID: 6326816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of hydrolysis of phosphorylated Ca2+,Mg2+-ATPase of the sarcoplasmic reticulum by Ca2+ inside and outside the vesicles.
    Daiho T; Takisawa H; Yamamoto T
    J Biochem; 1985 Feb; 97(2):643-53. PubMed ID: 3159720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A phosphorylated conformational state of the (Ca2+-Mg2+)-ATPase of fast skeletal muscle sarcoplasmic reticulum can mediate rapid Ca2+ release.
    Chiesi M; Wen YS
    J Biol Chem; 1983 May; 258(10):6078-85. PubMed ID: 6133856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the phosphoenzyme that is involved in the Ca2+ -Ca2+ exchange catalyzed by the Ca2+ -ATPase of sarcoplasmic reticulum vesicles.
    Inao S; Kanazawa T
    Biochim Biophys Acta; 1986 May; 857(1):28-37. PubMed ID: 2938630
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rate of calcium release and ATP synthesis in sarcoplasmic reticulum vesicles.
    Sande-Lemos MP; De Meis L
    Eur J Biochem; 1988 Jan; 171(1-2):273-8. PubMed ID: 2448140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reaction mechanism of calcium-ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates.
    Yamada S; Ikemoto N
    J Biol Chem; 1980 Apr; 255(7):3108-19. PubMed ID: 6444634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.
    Medda P; Fassold E; Hasselbach W
    Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. (Ca2+ + Mg2+)-ATPase activity associated with the maintenance of a Ca2+ gradient by sarcoplasmic reticulum at submicromolar external [Ca2+]. The effect of hypothyroidism.
    Simonides WS; Van Hardeveld C
    Biochim Biophys Acta; 1988 Aug; 943(2):349-59. PubMed ID: 2456786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vanadate inhibition of the Ca-ATPase activity of sarcoplasmic reticulum vesicles.
    Barrabin H; de Meis L
    An Acad Bras Cienc; 1982 Dec; 54(4):743-51. PubMed ID: 6221681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change.
    Hanel AM; Jencks WP
    Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The binding of ATP and Mg2+ to the calcium adenosinetriphosphatase of sarcoplasmic reticulum follows a random mechanism.
    Reinstein J; Jencks WP
    Biochemistry; 1993 Jul; 32(26):6632-42. PubMed ID: 8329390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.