These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6235215)

  • 101. Activation of Ca2+ uptake and inhibition of reversal of the sarcoplasmic reticulum Ca2+ pump by aromatic compounds.
    Petretski JH; Wolosker H; de Meis L
    J Biol Chem; 1989 Dec; 264(34):20339-43. PubMed ID: 2531144
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles.
    Beeler TJ
    J Biol Chem; 1980 Oct; 255(19):9156-61. PubMed ID: 6106021
    [TBL] [Abstract][Full Text] [Related]  

  • 103. On the mechanism of Ca2+-dependent adenosine triphosphatase of sarcoplasmic reticulum. Occurrence of two types of phosphoenzyme intermediates in the presence of KCl.
    Shigekawa M; Akowitz AA
    J Biol Chem; 1979 Jun; 254(11):4726-30. PubMed ID: 155697
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump.
    Inesi G; de Meis L
    J Biol Chem; 1989 Apr; 264(10):5929-36. PubMed ID: 2522442
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Conformational changes of the Ca2+-ATPase as early events of Ca2+ release from sarcoplasmic reticulum.
    Mészáros LG; Ikemoto N
    J Biol Chem; 1985 Dec; 260(30):16076-9. PubMed ID: 2933405
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Regulation of ATP synthesis catalyzed by the calcium pump of sarcoplasmic reticulum.
    Sande-Lemos MP; de Meis L
    J Biol Chem; 1988 Mar; 263(8):3795-8. PubMed ID: 2964443
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Calcium-dependent calcium occlusion in the sarcoplasmic reticulum Ca2+-ATPase. Its enhancement by phosphorylation of the enzyme.
    Nakamura J
    J Biol Chem; 1987 Oct; 262(30):14492-7. PubMed ID: 2959660
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. II. Kinetic properties of the phosphoenzyme formed at the steady state in high Mg2+ and low Ca2+ concentrations.
    Shigekawa M; Dougherty JP
    J Biol Chem; 1978 Mar; 253(5):1451-7. PubMed ID: 146711
    [No Abstract]   [Full Text] [Related]  

  • 109. Fast efflux of Ca2+ mediated by the sarcoplasmic reticulum Ca2(+)-ATPase.
    de Meis L
    J Biol Chem; 1991 Mar; 266(9):5736-42. PubMed ID: 1706338
    [TBL] [Abstract][Full Text] [Related]  

  • 110. The effect of the Ca2+-ATPase of sarcoplasmic reticulum upon activities of Na+, K+, and H3O+ ions.
    Wiggins PM
    J Biol Chem; 1980 Dec; 255(23):11365-71. PubMed ID: 6449509
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin.
    Sagara Y; Fernandez-Belda F; de Meis L; Inesi G
    J Biol Chem; 1992 Jun; 267(18):12606-13. PubMed ID: 1535623
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Elimination of the hydroxyl groups in the ribose ring of ATP reduces its ability to phosphorylate the sarcoplasmic reticulum Ca(2+)-ATPase.
    Coan C; Amaral Júnior JA; Verjovski-Almeida S
    J Biol Chem; 1993 Apr; 268(10):6917-24. PubMed ID: 8463222
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Uncoupling of Ca2+ transport in sarcoplasmic reticulum as a result of labeling lipid amino groups and inhibition of Ca2+-ATPase activity by modification of lysine residues of the Ca2+-ATPase polypeptide.
    Hidalgo C; Petrucci DA; Vergara C
    J Biol Chem; 1982 Jan; 257(1):208-16. PubMed ID: 6458613
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Anion effects on in vitro sarcoplasmic reticulum function. The relationship between anions and calcium flux.
    Chu A; Tate CA; Bick RJ; Van Winkle WB; Entman ML
    J Biol Chem; 1983 Feb; 258(3):1656-64. PubMed ID: 6218166
    [TBL] [Abstract][Full Text] [Related]  

  • 115. High efficiency Ca2+ transport by the sarcoplasmic reticulum Ca2(+)-ATPase in the absence of the 53-kilodalton glycoprotein.
    Martin DW
    J Biol Chem; 1990 Dec; 265(34):20946-51. PubMed ID: 2147428
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Functional interactions of catalytic site and transmembrane channel in the sarcoplasmic reticulum ATPase.
    de Meis L; Suzano VA; Inesi G
    J Biol Chem; 1990 Nov; 265(31):18848-51. PubMed ID: 2146264
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Relationship of the regulatory nucleotide site to the catalytic site of the sarcoplasmic reticulum Ca2+-ATPase.
    Bishop JE; Al-Shawi MK; Inesi G
    J Biol Chem; 1987 Apr; 262(10):4658-63. PubMed ID: 2951370
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Induction by nucleotide triphosphate hydrolysis of a form of sarcoplasmic reticulum ATPase capable of medium phosphate-oxygen exchange in presence of calcium.
    de Meis L; Boyer PD
    J Biol Chem; 1978 Mar; 253(5):1556-9. PubMed ID: 146715
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Ca2+ translocation across sarcoplasmic reticulum ATPase randomizes the two transported ions.
    Canet D; Forge V; Guillain F; Mintz E
    J Biol Chem; 1996 Aug; 271(34):20566-72. PubMed ID: 8702801
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum.
    Meissner G
    J Biol Chem; 1984 Feb; 259(4):2365-74. PubMed ID: 6698971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.