These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 6235224)
1. Interdependence of factors affecting the actin-activated ATPase activity of myosin II from Acanthamoeba castellanii. Kuznicki J; Korn ED J Biol Chem; 1984 Jul; 259(14):9302-7. PubMed ID: 6235224 [TBL] [Abstract][Full Text] [Related]
2. Acanthamoeba cofactor protein is a heavy chain kinase required for actin activation of the Mg2+-ATPase activity of Acanthamoeba myosin I. Maruta H; Korn ED J Biol Chem; 1977 Dec; 252(23):8329-32. PubMed ID: 144730 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular regulation of the actin-activated ATPase activity of filaments of Acanthamoeba Myosin II. Kuznicki J; Albanesi JP; Côté GP; Korn ED J Biol Chem; 1983 May; 258(10):6011-4. PubMed ID: 6222038 [TBL] [Abstract][Full Text] [Related]
4. Filament formation and actin-activated ATPase activity are abolished by proteolytic removal of a small peptide from the tip of the tail of the heavy chain of Acanthamoeba myosin II. Kuznicki J; Côté GP; Bowers B; Korn ED J Biol Chem; 1985 Feb; 260(3):1967-72. PubMed ID: 3155741 [TBL] [Abstract][Full Text] [Related]
5. Cooperative dependence of the actin-activated Mg2+-ATPase activity of Acanthamoeba myosin II on the extent of filament phosphorylation. Atkinson MA; Lambooy PK; Korn ED J Biol Chem; 1989 Mar; 264(7):4127-32. PubMed ID: 2521858 [TBL] [Abstract][Full Text] [Related]
6. Effects of limited tryptic cleavage on the physical and enzymatic properties of myosin II from Acanthamoeba castellanii. Kuznicki J; Atkinson MA; Korn ED J Biol Chem; 1984 Jul; 259(14):9308-13. PubMed ID: 6235225 [TBL] [Abstract][Full Text] [Related]
7. Purification and characterization of actin-activatable, Ca2+-sensitive myosin II from Acanthamoeba. Collins JH; Korn ED J Biol Chem; 1981 Mar; 256(5):2586-95. PubMed ID: 6109730 [TBL] [Abstract][Full Text] [Related]
8. Identification of three phosphorylation sites on each heavy chain of Acanthamoeba myosin II. Côté GP; Collins JH; Korn ED J Biol Chem; 1981 Dec; 256(24):12811-6. PubMed ID: 6118366 [TBL] [Abstract][Full Text] [Related]
9. Regulation of actin-activated ATP hydrolysis by arterial myosin. Chacko S; Rosenfeld A Proc Natl Acad Sci U S A; 1982 Jan; 79(2):292-6. PubMed ID: 6210906 [TBL] [Abstract][Full Text] [Related]
10. Functional consequences of the proteolytic removal of regulatory serines from the nonhelical tailpiece of Acanthamoeba myosin II. Sathyamoorthy V; Atkinson MA; Bowers B; Korn ED Biochemistry; 1990 Apr; 29(15):3793-7. PubMed ID: 2160267 [TBL] [Abstract][Full Text] [Related]
11. Requirement of phosphorylation of Physarum myosin heavy chain for thick filament formation, actin activation of Mg2+-ATPase activity, and Ca2+-inhibitory superprecipitation. Ogihara S; Ikebe M; Takahashi K; Tonomura Y J Biochem; 1983 Jan; 93(1):205-23. PubMed ID: 6132916 [TBL] [Abstract][Full Text] [Related]
12. Effects of Ca2+ and Mg2+ on the actomyosin adenosine-5'-triphosphatase of stably phosphorylated gizzard myosin. Heaslip RJ; Chacko S Biochemistry; 1985 May; 24(11):2731-6. PubMed ID: 3161538 [TBL] [Abstract][Full Text] [Related]
13. Proteolytic separation of the actin-activatable ATPase site from the phosphorylation site on the heavy chain of Acanthamoeba myosin IA. Maruta H; Korn ED J Biol Chem; 1981 Jan; 256(1):503-6. PubMed ID: 6108957 [TBL] [Abstract][Full Text] [Related]
14. The binding of actin to phosphorylated and dephosphorylated myosin. Michnicka M; Kasman K; Kakol I Biochim Biophys Acta; 1982 Jun; 704(3):470-5. PubMed ID: 6126214 [TBL] [Abstract][Full Text] [Related]
15. Regulation of the actin-activated ATPase activity of Acanthamoeba myosin II by copolymerization with phosphorylated and dephosphorylated peptides derived from the carboxyl-terminal end of the heavy chain. Ganguly C; Atkinson MA; Attri AK; Sathyamoorthy V; Bowers B; Korn ED J Biol Chem; 1990 Jun; 265(17):9993-8. PubMed ID: 2141027 [TBL] [Abstract][Full Text] [Related]
16. Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin. Stossel TP; Hartwig JH J Biol Chem; 1975 Jul; 250(14):5706-12. PubMed ID: 124735 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the actin-activated ATPase and in vitro motility activities of monomeric and filamentous Acanthamoeba myosin II. Ganguly C; Baines IC; Korn ED; Sellers J J Biol Chem; 1992 Oct; 267(29):20900-4. PubMed ID: 1400404 [TBL] [Abstract][Full Text] [Related]
18. Limited tryptic digestion of Acanthamoeba myosin IA abolishes regulation of actin-activated ATPase activity by heavy chain phosphorylation. Lynch TJ; Brzeska H; Korn ED J Biol Chem; 1987 Oct; 262(28):13842-9. PubMed ID: 2958454 [TBL] [Abstract][Full Text] [Related]
19. Dependence on Ca2+ and tropomyosin of the actin-activated ATPase activity of phosphorylated gizzard myosin in the presence of low concentrations of Mg2+. Nag S; Seidel JC J Biol Chem; 1983 May; 258(10):6444-9. PubMed ID: 6222043 [TBL] [Abstract][Full Text] [Related]
20. Purification of a protein phosphatase from Acanthamoeba that dephosphorylates and activates myosin II. McClure JA; Korn ED J Biol Chem; 1983 Dec; 258(23):14570-5. PubMed ID: 6315729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]