These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 6236064)
1. [Effect of the membrane potential on the rate of ATP hydrolysis in submitochondrial particles]. Gladysheva TB; Kozlov IA; Khodzhaev EIu; Cherniak BV Dokl Akad Nauk SSSR; 1984; 276(4):980-3. PubMed ID: 6236064 [No Abstract] [Full Text] [Related]
2. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase. Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308 [TBL] [Abstract][Full Text] [Related]
3. [Redox regulation of the interaction between mitochondrial H+-ATPase and a natural protein inhibitor]. Kozlov IA; Khodzhaev EIu; Cherniak BV Dokl Akad Nauk SSSR; 1985; 281(6):1482-4. PubMed ID: 2863099 [No Abstract] [Full Text] [Related]
4. Effect of some lipophilic substances on mitochondrial ATPase. Casali C; Degli Esposti M; Bertoli E; Parenti-Castelli G; Lenaz G Boll Soc Ital Biol Sper; 1980 May; 56(10):996-1001. PubMed ID: 6449955 [TBL] [Abstract][Full Text] [Related]
5. [Direct electric measurement of the functioning of adenosine triphosphatase of submitochondrial particles of beef heart]. Pfister C; Pougeois R C R Acad Hebd Seances Acad Sci D; 1978 Sep; 287(4):341-3. PubMed ID: 152675 [TBL] [Abstract][Full Text] [Related]
6. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles. Lowe PN; Beechey RB Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084 [TBL] [Abstract][Full Text] [Related]
7. [Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during delta-mu-H+ generation on a membrane]. Vasil'eva EA; Panchenko MV; Vinogradov AD Biokhimiia; 1989 Sep; 54(9):1490-8. PubMed ID: 2531616 [TBL] [Abstract][Full Text] [Related]
8. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein. de Gómez-Puyou MT; Domínguez-Ramírez L; Pérez-Hernández G; Gómez-Puyou A Arch Biochem Biophys; 2005 Jul; 439(1):129-37. PubMed ID: 15950171 [TBL] [Abstract][Full Text] [Related]
9. Electrical response of beef-heart submitochondrial particles bound to phospholipid-impregnated millipore filters during ATP hydrolysis. Pfister C; Pougeois R Biochim Biophys Acta; 1980 Feb; 589(2):201-16. PubMed ID: 6444522 [TBL] [Abstract][Full Text] [Related]
10. Biochemical aspects of the mechanism of action of antiarrhythmic drugs on mitochondria. VII. Effect on energy-linked reactions and on membrane potential. Klüppel ML; Borba HR; Silveira O; Lopes LC; Campello Ade P Cell Biochem Funct; 1986 Oct; 4(4):289-96. PubMed ID: 2878737 [TBL] [Abstract][Full Text] [Related]
11. Tightly-bound ATP and ADP in reconstituted submitochondrial particles. Leimgruber RM; Senior AE Biochem Biophys Res Commun; 1978 Aug; 83(3):837-42. PubMed ID: 152109 [No Abstract] [Full Text] [Related]
12. Titration of the binding sites for the oligomycin-sensitivity conferring protein in beef heart submitochondrial particles. Dupuis A; Satre M; Vignais PV FEBS Lett; 1983 May; 156(1):99-102. PubMed ID: 6189744 [TBL] [Abstract][Full Text] [Related]
13. Chemical approach to the structure and functioning of the H+-linked ATPases. Exploration of binding sites for natural ligands on the F1 -ATPases by photoaffinity labeling. Vignais PV; Dianoux AC; Klein G; Lauquin GJ; Lunardi J; Pougeois R; Satre M Prog Clin Biol Res; 1982; 102 Pt B():439-47. PubMed ID: 6219398 [No Abstract] [Full Text] [Related]
14. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase. Solaini G; Tadolini B Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925 [TBL] [Abstract][Full Text] [Related]
15. Pre-steady-state studies of the adenosine triphosphatase activity of coupled submitochondrial particles. Regulation by ADP. Martins OB; Tuena de Gómez-Puyou M; Gómez-Puyou A Biochemistry; 1988 Sep; 27(19):7552-8. PubMed ID: 2974725 [TBL] [Abstract][Full Text] [Related]
16. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
17. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles. Sorgato MC; Galiazzo F; Panato L; Ferguson SJ Biochim Biophys Acta; 1982 Oct; 682(1):184-8. PubMed ID: 6215943 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217 [TBL] [Abstract][Full Text] [Related]
19. Hydrolysis of ITP generates a membrane potential in submitochondrial particles. Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275 [TBL] [Abstract][Full Text] [Related]
20. [Effect of anions on the ATPase activity of submitochondrial particles]. Ivashchenko AT; Uteulin KR Biokhimiia; 1983 Jan; 48(1):11-6. PubMed ID: 6219716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]