These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 6236103)
41. A kinetic study of the interaction of vanadate with the Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum. Ortiz A; García-Carmona F; García-Cánovas F; Gómez-Fernández JC Biochem J; 1984 Jul; 221(1):213-22. PubMed ID: 6147134 [TBL] [Abstract][Full Text] [Related]
42. Hepatic adenosine triphosphate-dependent Ca2+ transport is mediated by distinct carriers on rat basolateral and canalicular membranes. Blitzer BL; Hostetler BR; Scott KA J Clin Invest; 1989 Apr; 83(4):1319-25. PubMed ID: 2703534 [TBL] [Abstract][Full Text] [Related]
43. Kinetics of inhibition of the plasma membrane calcium pump by vanadate in intact human red cells. Tiffert T; Lew VL Cell Calcium; 2001 Nov; 30(5):337-42. PubMed ID: 11733940 [TBL] [Abstract][Full Text] [Related]
44. Lipid requirement of the vanadate effect on the binding of calcium and ATP to the calcium transport ATPase of the sarcoplasmic reticulum. Medda P; Hasselbach W Eur J Biochem; 1985 Jan; 146(2):255-60. PubMed ID: 3155683 [TBL] [Abstract][Full Text] [Related]
45. The ATP-dependent Ca2+-pumping system of Streptococcus faecium. Bürkler J; Solioz M Ann N Y Acad Sci; 1982; 402():422-32. PubMed ID: 6220642 [No Abstract] [Full Text] [Related]
46. Effects of thyrotropin, carbachol, and protein kinase-C stimulators on glucose transport and glucose oxidation by primary cultures of dog thyroid cells. Haraguchi K; Rani CS; Field JB Endocrinology; 1988 Sep; 123(3):1288-95. PubMed ID: 2456912 [TBL] [Abstract][Full Text] [Related]
47. Conformational changes of the in situ red cell membrane calcium pump affect its proteolysis. Sarkadi B; Enyedi A; Gárdos G Biochim Biophys Acta; 1987 May; 899(1):129-33. PubMed ID: 2952170 [TBL] [Abstract][Full Text] [Related]
48. Effect of vanadate, a potent alkaline phosphatase inhibitor, on 45Ca and 32Pi uptake by matrix vesicle-enriched fractions from chicken epiphyseal cartilage. Register TC; Wuthier RE J Biol Chem; 1984 Mar; 259(6):3511-8. PubMed ID: 6561198 [TBL] [Abstract][Full Text] [Related]
49. The E1----E2 transition of Ca2+-transporting ATPase in sarcoplasmic reticulum occurs without major changes in secondary structure. A circular-dichroism study. Csermely P; Katopis C; Wallace BA; Martonosi A Biochem J; 1987 Feb; 241(3):663-9. PubMed ID: 2954535 [TBL] [Abstract][Full Text] [Related]
50. Glucose enhancement of insulin action: elevated glucose levels increase insulin stimulation of 2-deoxyglucose uptake in cultured human fibroblasts. Ishibashi F; Hidaka H; Howard BV J Clin Endocrinol Metab; 1982 Jan; 54(1):34-9. PubMed ID: 7033268 [TBL] [Abstract][Full Text] [Related]
51. Calcium transport, Ca2(+)-ATPase, and lipid order in rabbit ocular lens membranes. Delamere NA; Paterson CA; Borchman D; King KL; Cawood SA Am J Physiol; 1991 Apr; 260(4 Pt 1):C731-7. PubMed ID: 1826815 [TBL] [Abstract][Full Text] [Related]
52. Some properties of the Ca2+-stimulated ATPase of a rat liver microsomal fraction. Dawson AP; Fulton DV Biochem J; 1983 Feb; 210(2):405-10. PubMed ID: 6222732 [TBL] [Abstract][Full Text] [Related]
53. Ca2+ homeostasis in the agonist-sensitive internal store: functional interactions between mitochondria and the ER measured In situ in intact cells. Landolfi B; Curci S; Debellis L; Pozzan T; Hofer AM J Cell Biol; 1998 Sep; 142(5):1235-43. PubMed ID: 9732284 [TBL] [Abstract][Full Text] [Related]
54. Hexose transport in plasma membrane vesicles of rat myoblast L6. Cheung MO; Lo TC Can J Biochem Cell Biol; 1984 Nov; 62(11):1217-27. PubMed ID: 6543149 [TBL] [Abstract][Full Text] [Related]
55. ATP-dependent calcium uptake activity associated with a disk membrane fraction isolated from bovine retinal rod outer segments. Puckett KL; Aronson ET; Goldin SM Biochemistry; 1985 Jan; 24(2):390-400. PubMed ID: 3156633 [TBL] [Abstract][Full Text] [Related]
56. Inhibition of Ca2+ inflow causes an abrupt cessation of growth-factor-induced repetitive free Ca2+ transients in single NIH-3T3 cells. Polverino AJ; Hughes BP; Barritt GJ Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):849-55. PubMed ID: 1910337 [TBL] [Abstract][Full Text] [Related]
57. The effects of alpha- and beta-adrenergic agents, Ca2+ and insulin on 2-deoxyglucose uptake and phosphorylation in perfused rat heart. Rattigan S; Edwards SJ; Hettiarachchi M; Clark MG Biochim Biophys Acta; 1986 Nov; 889(2):225-35. PubMed ID: 3535904 [TBL] [Abstract][Full Text] [Related]
58. The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor. Dubyak GR; Kleinzeller A J Biol Chem; 1980 Jun; 255(11):5306-12. PubMed ID: 6246104 [No Abstract] [Full Text] [Related]
59. Role of calcium ions in insulin action on hexose transport in L6 muscle cells. Klip A; Li G; Logan WJ Am J Physiol; 1984 Sep; 247(3 Pt 1):E297-304. PubMed ID: 6433719 [TBL] [Abstract][Full Text] [Related]
60. Vanadate oligoanions interact with the proton ejection by the Ca2+ pump of sarcoplasmic reticulum. Aureliano M; Madeira VM Biochem Biophys Res Commun; 1994 Nov; 205(1):161-7. PubMed ID: 7999017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]