These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Determination of RBC flow clogging via micropore filters. Bassios PT; Michail AA; Koutsouris D Technol Health Care; 1995 Mar; 3(1):47-52. PubMed ID: 7767688 [TBL] [Abstract][Full Text] [Related]
5. New parameter for monitoring fouling during ultrafiltration of WWTP effluent. Roorda JH; van der Graaf JH Water Sci Technol; 2001; 43(10):241-8. PubMed ID: 11436787 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of red blood cell filterability test: influences of pore size, hematocrit level, and flow rate. Reinhart WH; Usami S; Schmalzer EA; Lee MM; Chien S J Lab Clin Med; 1984 Oct; 104(4):501-16. PubMed ID: 6481214 [TBL] [Abstract][Full Text] [Related]
7. Determination of erythrocyte transit times through micropores. II. Influence of experimental and physicochemical factors. Koutsouris D; Guillet R; Wenby RB; Meiselman HJ Biorheology; 1989; 26(5):881-98. PubMed ID: 2620086 [TBL] [Abstract][Full Text] [Related]
8. Filtrability investigations with red blood cell (RBC) suspensions: effects of different blood components and pentoxifylline on RBC flow rate. Seiffge D; Kiesewetter H Ric Clin Lab; 1981; 11 Suppl 1():117-23. PubMed ID: 7188104 [TBL] [Abstract][Full Text] [Related]
9. Erythrometer: a new device for measuring erythrocyte filterability and plasma viscosity. Stoltz JF; Duvivier C; Malher E Biorheology Suppl; 1984; 1():255-9. PubMed ID: 6434002 [TBL] [Abstract][Full Text] [Related]
10. Blood cells filtration at a low flow state. Gao SJ; Niimi H Monogr Atheroscler; 1990; 15():186-97. PubMed ID: 2296242 [No Abstract] [Full Text] [Related]
11. Filtrability of whole blood and erythrocyte suspensions under the influence of several anticoagulants. Schröer R; Muth K Ric Clin Lab; 1981; 11 Suppl 1():109-16. PubMed ID: 6821313 [TBL] [Abstract][Full Text] [Related]
12. Scale-down of continuous filtration for rapid bioprocess design: Recovery and dewatering of protein precipitate suspensions. Reynolds T; Boychyn M; Sanderson T; Bulmer M; More J; Hoare M Biotechnol Bioeng; 2003 Aug; 83(4):454-64. PubMed ID: 12800139 [TBL] [Abstract][Full Text] [Related]
13. An electromic differential pressure flowmeter and a resistance meter for continuous measurement of vascular resistance. Grände PO; Borgström P Acta Physiol Scand; 1978 Feb; 102(2):224-30. PubMed ID: 147004 [TBL] [Abstract][Full Text] [Related]
14. [Studies on the erythrocyte deformability by the filtration method]. Lukjan H; Rość D; Szpak A; Bodzenta A; Wnorowska-Grodzka D Kardiol Pol; 1982; 25(12):985-9. PubMed ID: 7169736 [No Abstract] [Full Text] [Related]
15. [Perfusion microfilter for blood]. Simbirtsev SA; Os'shak AR; Petrash VV; Beliakov NA Vestn Khir Im I I Grek; 1985 Aug; 135(8):115-7. PubMed ID: 4060499 [TBL] [Abstract][Full Text] [Related]
16. A transducer for measuring high frequency oscillatory flow rates. Isabey D; Delpuech C Bull Eur Physiopathol Respir; 1986; 22(5):483-8. PubMed ID: 2948583 [TBL] [Abstract][Full Text] [Related]
17. Robust scale-up of dead end filtration: impact of filter fouling mechanisms and flow distribution. Laska ME; Brooks RP; Gayton M; Pujar NS Biotechnol Bioeng; 2005 Nov; 92(3):308-20. PubMed ID: 16167331 [TBL] [Abstract][Full Text] [Related]
18. An improved filtration rate for measuring red cell deformability. Sowemimo-Coker SO; Kovacs IB; Turner P; Kirby JD Biorheology Suppl; 1984; 1():249-53. PubMed ID: 6591983 [TBL] [Abstract][Full Text] [Related]
19. [Importance of pH- and osmolarity-dependent changes in deformability- determining factors on the filterability of human erythrocytes]. Kucera W; Meier W; Lerche D; Paulitschke M Biomed Biochim Acta; 1984; 43(3):337-48. PubMed ID: 6743306 [TBL] [Abstract][Full Text] [Related]
20. Erythrocyte filtrability measurement by the initial flow rate method. Hanss M Biorheology; 1983; 20(2):199-211. PubMed ID: 6409181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]