These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6236858)

  • 1. The erythrocyte-stasis-meter (ESM): a device to determine a universal parameter for the flow characteristics of blood.
    Radtke H; Roggenkamp HG; Wolf S; Mrowietz C; Kiesewetter H
    Biorheology Suppl; 1984; 1():75-7. PubMed ID: 6236858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assignment of hemorheological instruments in the angiologic ambulance: first results and experiences.
    Kiesewetter H; Radtke H; Roggenkamp HG; Jung F; Blume J; Schneider R
    Biorheology Suppl; 1984; 1():71-4. PubMed ID: 6592000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Clinical value of hemorrheology in peripheral arterial occlusive diseases].
    Sciannameo F; Francucci M; Cao PG; Giustozzi G; Valentini M; Tockner M; Sassano L; Grasselli A
    Ric Clin Lab; 1983; 13 Suppl 3():417-22. PubMed ID: 6673023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A measuring device to determine a universal parameter for the flow characteristics of blood: measurement of the yield shear stress in a branched capillary.
    Radtke H; Schneider R; Witt R; Kiesewetter H; Schmid-Schönbein H
    Adv Exp Med Biol; 1984; 169():851-7. PubMed ID: 6731131
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of rheological parameters on the velocity of erythrocytes passing nailfold capillaries in humans.
    Jung F; Mrowietz C; Hiebl B; Franke RP; Pindur G; Sternitzky R
    Clin Hemorheol Microcirc; 2011; 48(1):129-39. PubMed ID: 21876241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of antithrombotic effect in drug therapy of the chronic arterial occlusive disease.
    Angelkort B
    Ric Clin Lab; 1981; 11 Suppl 1():215-21. PubMed ID: 7188109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An erythrocyte velocity meter.
    Carlill SD
    J Physiol; 1975 Mar; 246(2):6P-7P. PubMed ID: 124773
    [No Abstract]   [Full Text] [Related]  

  • 8. [Blood fluidity in essential hypertension, arterial occlusive disease and diabetic angiopathies].
    Sternitzky R; Hänsgen K; Podhaisky H
    Z Gesamte Inn Med; 1991 Nov; 46(16):610-4. PubMed ID: 1792802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes of blood-flow and erythrocyte properties in arterial occlusive diseases].
    Ehrly AM
    Med Welt; 1975 Oct; 26(43):1971-2. PubMed ID: 1196088
    [No Abstract]   [Full Text] [Related]  

  • 10. Blood rheology in arterial disease.
    Lowe GD
    Clin Sci (Lond); 1986 Aug; 71(2):137-46. PubMed ID: 3522049
    [No Abstract]   [Full Text] [Related]  

  • 11. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses.
    Sallam AM; Hwang NH
    Biorheology; 1984; 21(6):783-97. PubMed ID: 6240286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear model on pulsatile flow of blood through a porous bifurcated arterial stenosis in the presence of magnetic field and periodic body acceleration.
    Ponalagusamy R; Priyadharshini S
    Comput Methods Programs Biomed; 2017 Apr; 142():31-41. PubMed ID: 28325445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tube flow of human blood at near zero shear.
    Gaehtgens P
    Biorheology; 1987; 24(4):367-76. PubMed ID: 3663895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific methods to determine hemorheological parameters.
    Kiesewetter H; Dauer U; Mussler K; Teitel P; Seiffge D; Schmid-Schönbein H
    Ric Clin Lab; 1981; 11 Suppl 1():125-33. PubMed ID: 7188105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hematocrit-erythrocyte-disaggregation-apparatus (HEDA).
    Kiesewetter H; Mrowietz C; Lazar H; Jung F
    Biorheology Suppl; 1984; 1():213-5. PubMed ID: 6591978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The relation between erythrocyte filterability and platelet aggregation (in vitro studies in normal subjects and those with vascular disease before and after isotonic exercise)].
    Guerrini M; Vittoria A; Pieragalli D; Acciavatti A; Del Bigo C; Martelli G; Franchi M; Messa G; Galigani C; Di Perri T
    Ric Clin Lab; 1983; 13 Suppl 3():309-14. PubMed ID: 6231712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology and ultrasound scattering from aggregated red cell suspensions in shear flow.
    Haider L; Snabre P; Boynard M
    Biophys J; 2004 Oct; 87(4):2322-34. PubMed ID: 15454433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Multi-distributed ischemia and degree of hemorrheological changes].
    Sergio G; Artale F; Francisci A; Perego MA
    Ric Clin Lab; 1983; 13 Suppl 3():427-30. PubMed ID: 6673025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.