These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 6237363)

  • 1. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor.
    Hecht MH; Sturtevant JM; Sauer RT
    Proc Natl Acad Sci U S A; 1984 Sep; 81(18):5685-9. PubMed ID: 6237363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in lambda repressor's amino-terminal domain: implications for protein stability and DNA binding.
    Hecht MH; Nelson HC; Sauer RT
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2676-80. PubMed ID: 6221342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal melting properties of C-terminal domain mutants of bacteriophage lambda cI repressor.
    Merabet EK; Burz DS; Ackers GK
    Methods Enzymol; 1998; 295():450-67. PubMed ID: 9750232
    [No Abstract]   [Full Text] [Related]  

  • 4. Two-stage thermal unfolding of [Cys55]-substituted Cro repressor of bacteriophage lambda.
    Gitelson GI; Griko Yu V; Kurochkin AV; Rogov VV; Kutyshenko VP; Kirpichnikov MP; Privalov PL
    FEBS Lett; 1991 Sep; 289(2):201-4. PubMed ID: 1833238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Calorimetric studies of the effect of amino acid replacements 16Gln-Leu and 26Tyr-Asp on the structural organization and stability of the Cro-repressor from phage lambda].
    Rogov VV; Griko IuV
    Mol Biol (Mosk); 1993; 27(4):798-804. PubMed ID: 8361487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing and decreasing protein stability: effects of revertant substitutions on the thermal denaturation of phage lambda repressor.
    Hecht MH; Hehir KM; Nelson HC; Sturtevant JM; Sauer RT
    J Cell Biochem; 1985; 29(3):217-24. PubMed ID: 4077930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining thermostable mutations increases the stability of lambda repressor.
    Stearman RS; Frankel AD; Freire E; Liu BS; Pabo CO
    Biochemistry; 1988 Sep; 27(19):7571-4. PubMed ID: 3061460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lambda and P22 phage repressors.
    Sauer RT; Nelson HC; Hehir K; Hecht MH; Gimble FS; DeAnda J; Poteete AR
    J Biomol Struct Dyn; 1983 Dec; 1(4):1011-22. PubMed ID: 6242868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered Cro repressors from engineered mutagenesis of a synthetic cro gene.
    Eisenbeis SJ; Nasoff MS; Noble SA; Bracco LP; Dodds DR; Caruthers MH
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1084-8. PubMed ID: 3156377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid substitutions that increase the thermal stability of the lambda Cro protein.
    Pakula AA; Sauer RT
    Proteins; 1989; 5(3):202-10. PubMed ID: 2780540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the operator-binding domain of bacteriophage lambda repressor: implications for DNA recognition and gene regulation.
    Lewis M; Jeffrey A; Wang J; Ladner R; Ptashne M; Pabo CO
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():435-40. PubMed ID: 6305562
    [No Abstract]   [Full Text] [Related]  

  • 12. Additivity of mutant effects assessed by binomial mutagenesis.
    Gregoret LM; Sauer RT
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4246-50. PubMed ID: 8483940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations defining the operator-binding sites of bacteriophage lambda repressor.
    Nelson HC; Hecht MH; Sauer RT
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():441-9. PubMed ID: 6222865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phage lambda repressor revertants. Amino acid substitutions that restore activity to mutant proteins.
    Hecht MH; Sauer RT
    J Mol Biol; 1985 Nov; 186(1):53-63. PubMed ID: 2934554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage of the lambda and P22 repressors by recA protein.
    Sauer RT; Ross MJ; Ptashne M
    J Biol Chem; 1982 Apr; 257(8):4458-62. PubMed ID: 6461657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of bacteriophage lambda cI repressor: effects of single-site mutations on the monomer-dimer equilibrium.
    Burz DS; Beckett D; Benson N; Ackers GK
    Biochemistry; 1994 Jul; 33(28):8399-405. PubMed ID: 8031775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of bacteriophage lambda repressor synthesis directed by the PRE promoter: influence of temperature, multiplicity of infection, and mutation of PRM or the cro gene.
    Yen KM; Gussin GN
    Mol Gen Genet; 1980; 179(2):409-19. PubMed ID: 6450868
    [No Abstract]   [Full Text] [Related]  

  • 18. Structure and function of the repressor of bacteriophage lambda. II. Isolation and characterization of a lambda mutant which produces repressor having higher affinity for operators.
    Nag DK; Chattopadhyay DJ; Mandal NC
    Mol Gen Genet; 1984; 194(3):373-6. PubMed ID: 6234449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage lambda cro mutations: effects on activity and intracellular degradation.
    Pakula AA; Young VB; Sauer RT
    Proc Natl Acad Sci U S A; 1986 Dec; 83(23):8829-33. PubMed ID: 2947238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative packing arrangements in the hydrophobic core of lambda repressor.
    Lim WA; Sauer RT
    Nature; 1989 May; 339(6219):31-6. PubMed ID: 2524006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.