These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 623742)

  • 41. Dynamics of the microtubule oscillator: role of nucleotides and tubulin-MAP interactions.
    Mandelkow EM; Lange G; Jagla A; Spann U; Mandelkow E
    EMBO J; 1988 Feb; 7(2):357-65. PubMed ID: 3366117
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of tubulin and microtubule-associated protein interactions with guanine nucleotides and their nonhydrolyzable analogs.
    Purich DL; Terry BJ; MacNeal RK; Karr TL
    Methods Enzymol; 1982; 85 Pt B():416-33. PubMed ID: 6289045
    [No Abstract]   [Full Text] [Related]  

  • 43. Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64K protein.
    Margolis RL; Rauch CT
    Biochemistry; 1981 Jul; 20(15):4451-8. PubMed ID: 7284335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrolysis of GTP associated with the formation of tubulin oligomers is involved in microtubule nucleation.
    Carlier MF; Didry D; Pantaloni D
    Biophys J; 1997 Jul; 73(1):418-27. PubMed ID: 9199805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactions of tubulin-associated guanine nucleotides.
    Zeeberg B; Caplow M
    J Biol Chem; 1978 Mar; 253(6):1984-90. PubMed ID: 632249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of free and bound microtubular protein and guanine nucleotide under equilibrium conditions.
    Zeeberg B; Caplow M
    Biochemistry; 1979 Sep; 18(18):3880-6. PubMed ID: 486401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stereoselectivity of the guanyl-exchangeable nucleotide-binding site of tubulin probed by guanosine 5'-O-(2-thiotriphosphate) diastereoisomers.
    Roychowdhury S; Gaskin F
    Biochemistry; 1988 Oct; 27(20):7799-805. PubMed ID: 3207711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nucleotide binding and phosphorylation in microtubule assembly in vitro.
    Penningroth SM; Kirschner MW
    J Mol Biol; 1977 Oct; 115(4):643-73. PubMed ID: 201762
    [No Abstract]   [Full Text] [Related]  

  • 49. The effects of various GTP analogues on microtubule assembly.
    Muraoka M; Fukuzawa H; Nishida A; Okano K; Tsuchihara T; Shimoda A; Suzuki Y; Sato M; Osumi M; Sakai H
    Cell Struct Funct; 1999 Apr; 24(2):101-9. PubMed ID: 10362073
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nucleoside diphosphate kinase does not directly interact with tubulin nor microtubules.
    Melki R; Lascu I; Carlier MF; VĂ©ron M
    Biochem Biophys Res Commun; 1992 Aug; 187(1):65-72. PubMed ID: 1325795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of nucleotides in tubulin polymerization: effect of guanosine 5'-methylene diphosphonate.
    Sandoval IV; Jameson JL; Niedel J; MacDonald E; Cuatrecasas P
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3178-82. PubMed ID: 277919
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies.
    Melki R; Carlier MF; Pantaloni D; Timasheff SN
    Biochemistry; 1989 Nov; 28(23):9143-52. PubMed ID: 2605248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro microtubule assembly regulation by divalent cations and nucleotides.
    Gaskin F
    Biochemistry; 1981 Mar; 20(5):1318-22. PubMed ID: 7225331
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Turnover of tubulin and the N site GTP in Chinese hamster ovary cells.
    Spiegelman BM; Penningroth SM; Kirschner MW
    Cell; 1977 Nov; 12(3):587-600. PubMed ID: 562716
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of tubulin polymerization with ribose-modified analogs of GDP and GTP. Reduced inhibition with microtubule-associated proteins and magnesium.
    Hamel E; Lin CM
    Biochim Biophys Acta; 1984 Jan; 797(1):117-27. PubMed ID: 6419783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for a distinct ligand binding site on tubulin discovered through inhibition by GDP of paclitaxel-induced tubulin assembly in the absence of exogenous GTP.
    Wilcox E; McGrath C; Blokhin AV; Gussio R; Hamel E
    Arch Biochem Biophys; 2009 Apr; 484(1):55-62. PubMed ID: 19161972
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Separation of assembly-competent tubulin from brain microtubule protein preparations using a fast-performance liquid chromatography procedure.
    Roychowdhury S; Gaskin F
    J Neurochem; 1986 May; 46(5):1399-405. PubMed ID: 3007670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamics of tubulin polymerization into zinc sheets: assembly is not regulated by GTP hydrolysis.
    Melki R; Carlier MF
    Biochemistry; 1993 Apr; 32(13):3405-13. PubMed ID: 8461304
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetics of interaction of 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5'-triphosphate with bovine brain tubulin.
    Yarbrough LR; Fishback JL
    Biochemistry; 1985 Mar; 24(7):1708-14. PubMed ID: 4005223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nucleoside diphosphate kinase from brain. Purification and effect on microtubule assembly in vitro.
    Huitorel P; Simon C; Pantaloni D
    Eur J Biochem; 1984 Oct; 144(2):233-41. PubMed ID: 6092068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.