BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 6237550)

  • 1. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise.
    Essén-Gustavsson B; Henriksson J
    Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme levels of the NADH shuttle systems: measurements in isolated muscle fibres from humans of differing physical activity.
    Schantz PG; Henriksson J
    Acta Physiol Scand; 1987 Apr; 129(4):505-15. PubMed ID: 3591372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity patterns of phosphofructokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in microdissected fast and slow fibres from rabbit psoas and soleus muscle.
    Spamer C; Pette D
    Histochemistry; 1977 Jun; 52(3):201-16. PubMed ID: 142072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle of trained and untrained paraplegics and tetraplegics.
    Schantz P; Sjöberg B; Widebeck AM; Ekblom B
    Acta Physiol Scand; 1997 Sep; 161(1):31-9. PubMed ID: 9381947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.
    Borges O; Essén-Gustavsson B
    Acta Physiol Scand; 1989 May; 136(1):29-36. PubMed ID: 2773660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of exercise on muscle fibre composition and enzyme activities of skeletal muscles in young rats.
    Melichna J; Macková EV; Semiginovský B; Tolar M; Stichová J; Slavícek A; Vanková S; Bartůnĕk Z
    Physiol Bohemoslov; 1987; 36(4):321-8. PubMed ID: 2958891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of human skeletal muscle with special reference to effects of physical training on enzyme levels of the NADH shuttles and phenotypic expression of slow and fast myofibrillar proteins.
    Schantz PG
    Acta Physiol Scand Suppl; 1986; 558():1-62. PubMed ID: 2950727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle adaptation to extreme endurance training in man.
    Jansson E; Kaijser L
    Acta Physiol Scand; 1977 Jul; 100(3):315-24. PubMed ID: 144412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme activities in single electrophysiologically identified crab muscle fibres.
    Maier L; Pette D; Rathmayer W
    J Physiol; 1986 Feb; 371():191-9. PubMed ID: 3701650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition.
    Jaworowski A; Porter MM; Holmbäck AM; Downham D; Lexell J
    Acta Physiol Scand; 2002 Nov; 176(3):215-25. PubMed ID: 12392501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75-year-old men.
    Orlander J; Aniansson A
    Acta Physiol Scand; 1980 Jun; 109(2):149-54. PubMed ID: 6252748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in ultrastructural and metabolic profiles within the same type of fibres in various muscles of young and adult rats.
    Takekura H; Kasuga N; Yoshioka T
    Acta Physiol Scand; 1994 Mar; 150(3):335-44. PubMed ID: 8010140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endurance but not resistance training increases intra-myocellular lipid content and β-hydroxyacyl coenzyme A dehydrogenase activity in active elderly men.
    Ngo KT; Denis C; Saafi MA; Feasson L; Verney J
    Acta Physiol (Oxf); 2012 May; 205(1):133-44. PubMed ID: 22017921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity.
    Svedenhag J; Henriksson J; Juhlin-Dannfelt A
    Am J Physiol; 1984 Sep; 247(3 Pt 1):E305-11. PubMed ID: 6089581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat.
    Zonderland ML; Bär PR; Reijneveld JC; Spruijt BM; Keizer HA; Glatz JF
    Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):391-6. PubMed ID: 10208246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease.
    Maltais F; LeBlanc P; Simard C; Jobin J; Bérubé C; Bruneau J; Carrier L; Belleau R
    Am J Respir Crit Care Med; 1996 Aug; 154(2 Pt 1):442-7. PubMed ID: 8756820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time course of adaptation to low intensity training in sedentary men: dissociation of central and local effects.
    Orlander J; Kiessling KH; Ekblom B
    Acta Physiol Scand; 1980 Jan; 108(1):85-90. PubMed ID: 6246720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of endurance training on the capacity of red and white skeletal muscle of mouse to oxidize carboxyl-14C-labelled palmitate.
    Salminen A; Vihko V; Pilström L
    Acta Physiol Scand; 1977 Nov; 101(3):318-28. PubMed ID: 202144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measures of enzyme activities in type I and type II muscle fibres of man after training.
    Henriksson J; Reitman JS
    Acta Physiol Scand; 1976 Jul; 97(3):392-7. PubMed ID: 134623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle fibre types and enzyme activities after training with local leg ischaemia in man.
    Esbjörnsson M; Jansson E; Sundberg CJ; Sylvén C; Eiken O; Nygren A; Kaijser L
    Acta Physiol Scand; 1993 Jul; 148(3):233-41. PubMed ID: 8213179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.