BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 6238035)

  • 1. A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltransferase III activity.
    Campbell C; Stanley P
    J Biol Chem; 1984 Nov; 259(21):13370-8. PubMed ID: 6238035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A subclass of cell surface carbohydrates revealed by a CHO mutant with two glycosylation mutations.
    Stanley P; Sundaram S; Sallustio S
    Glycobiology; 1991 Jun; 1(3):307-14. PubMed ID: 1838951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel genetic instability associated with a developmentally regulated glycosyltransferase locus in Chinese hamster ovary cells.
    Sallustio S; Stanley P
    Somat Cell Mol Genet; 1989 Sep; 15(5):387-400. PubMed ID: 2528829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity.
    Stanley P; Chaney W
    Mol Cell Biol; 1985 Jun; 5(6):1204-11. PubMed ID: 2993857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of three gain-of-function CHO mutants that add the bisecting GlcNAc to N-glycans.
    Stanley P; Sundaram S; Tang J; Shi S
    Glycobiology; 2005 Jan; 15(1):43-53. PubMed ID: 15329358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H NMR spectroscopy of carbohydrates from the G glycoprotein of vesicular stomatitis virus grown in parental and Lec4 Chinese hamster ovary cells.
    Stanley P; Vivona G; Atkinson PH
    Arch Biochem Biophys; 1984 Apr; 230(1):363-74. PubMed ID: 6324683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lec1A Chinese hamster ovary cell mutants appear to arise from a structural alteration in N-acetylglucosaminyltransferase I.
    Chaney W; Stanley P
    J Biol Chem; 1986 Aug; 261(23):10551-7. PubMed ID: 2942543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LEC18, a dominant Chinese hamster ovary glycosylation mutant synthesizes N-linked carbohydrates with a novel core structure.
    Raju TS; Ray MK; Stanley P
    J Biol Chem; 1995 Dec; 270(51):30294-302. PubMed ID: 8530451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LEC14, a dominant Chinese hamster ovary glycosylation mutant expresses complex N-glycans with a new N-acetylglucosamine residue in the core region.
    Raju TS; Stanley P
    J Biol Chem; 1996 Mar; 271(13):7484-93. PubMed ID: 8631778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibodies that recognize bisected complex N-glycans on cell surface glycoproteins can be made in mice lacking N-acetylglucosaminyltransferase III.
    Lee J; Park SH; Stanley P
    Glycoconj J; 2002 Mar; 19(3):211-9. PubMed ID: 12815232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gain-of-function Chinese hamster ovary mutants LEC18 and LEC14 each express a novel N-acetylglucosaminyltransferase activity.
    Raju TS; Stanley P
    J Biol Chem; 1998 Jun; 273(23):14090-8. PubMed ID: 9603907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bisecting GlcNAc in cell growth control and tumor progression.
    Miwa HE; Song Y; Alvarez R; Cummings RD; Stanley P
    Glycoconj J; 2012 Dec; 29(8-9):609-18. PubMed ID: 22476631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of glycoprotein synthesis. UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in beta 1-4 linkage to the beta-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides.
    Narasimhan S
    J Biol Chem; 1982 Sep; 257(17):10235-42. PubMed ID: 6213618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The LEC11 Chinese hamster ovary mutant synthesizes N-linked carbohydrates containing sialylated, fucosylated lactosamine units. Analysis by one- and two-dimensional 1H NMR spectroscopy.
    Stanley P; Atkinson PH
    J Biol Chem; 1988 Aug; 263(23):11374-81. PubMed ID: 3403533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in alpha-glucosidase I.
    Ray MK; Yang J; Sundaram S; Stanley P
    J Biol Chem; 1991 Dec; 266(34):22818-25. PubMed ID: 1660460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Lec4A CHO glycosylation mutant arises from miscompartmentalization of a Golgi glycosyltransferase.
    Chaney W; Sundaram S; Friedman N; Stanley P
    J Cell Biol; 1989 Nov; 109(5):2089-96. PubMed ID: 2530238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a "bisecting" N-acetylglucosaminyl group on the binding of biantennary, complex oligosaccharides to concanavalin A, Phaseolus vulgaris erythroagglutinin (E-PHA), and Ricinus communis agglutinin (RCA-120) immobilized on agarose.
    Narasimhan S; Freed JC; Schachter H
    Carbohydr Res; 1986 Jun; 149(1):65-83. PubMed ID: 3731182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated, inactive N-acetylglucosaminyltransferase III (GlcNAc-TIII) induces neurological and other traits absent in mice that lack GlcNAc-TIII.
    Bhattacharyya R; Bhaumik M; Raju TS; Stanley P
    J Biol Chem; 2002 Jul; 277(29):26300-9. PubMed ID: 11986323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of baby-hamster kidney (BHK) cells treated with Swainsonine, an inhibitor of glycoprotein processing. Comparison with ricin-resistant BHK-cell mutants.
    Foddy L; Feeney J; Hughes RC
    Biochem J; 1986 Feb; 233(3):697-706. PubMed ID: 3085652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of UDP-GlcNAc:Gal beta 1-3GalNAc-R beta 1-6-N-acetylglucosaminyltransferase (GlcNAc to GalNAc) in Chinese hamster ovary cells.
    Datti A; Dennis JW
    J Biol Chem; 1993 Mar; 268(8):5409-16. PubMed ID: 8383671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.