These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 623846)

  • 1. [Substrate specificity of RNase from Actinomyces sp., strain 236, producing mono- and oligonucleotides with 5'-phosphate end groups].
    Abrosimova-Amel'ianchik NM
    Biokhimiia; 1978 Jan; 43(1):40-9. PubMed ID: 623846
    [No Abstract]   [Full Text] [Related]  

  • 2. [Purification and some properties of RNase from Actinomyces sp., strain 236, producing mono- and oligonucleotides with 5'-phosphate terminal groups].
    Abrosimova-Amel'ianchik NM; Artamonova OI
    Biokhimiia; 1977 Dec; 42(12):2168-77. PubMed ID: 597519
    [No Abstract]   [Full Text] [Related]  

  • 3. CD studies on ribonuclease A - oligonucleotides interactions.
    White MD; Keren-Zur M; Lapidot Y
    Nucleic Acids Res; 1977 Apr; 4(4):843-52. PubMed ID: 866194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic oligonucleotides for biomedical applications.
    Seliger H; Fröhlich A; Gröger G; Krist B; Montenarh M; Rösch H; Rösch R; Ortigao FR
    Nucleic Acids Symp Ser; 1991; (24):193-6. PubMed ID: 1726743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [RNAase from Actinomyces sp., strain 236, forming fragments with terminal 5'-phosphate (nuclease A236)].
    Abrosimova-Amel'ianchik ; Artamonova OI; Tatarskaia RI; Baev AA
    Dokl Akad Nauk SSSR; 1972 Oct; 207(4):985-7. PubMed ID: 4642322
    [No Abstract]   [Full Text] [Related]  

  • 6. [Modification by azocombination of the catalytic properties of ribonucleases].
    Kalacheva NV; Kurinenko BM
    Biokhimiia; 1985 Mar; 50(3):406-11. PubMed ID: 2581627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligonucleotide derivatives resistant to the cell nuclease degradation and effective for the RNA hydrolysis by RNase H.
    Gottikh MB; Krynetskaya NF; Shabarova ZA
    Nucleic Acids Symp Ser; 1991; (24):260. PubMed ID: 1726751
    [No Abstract]   [Full Text] [Related]  

  • 8. The subsite structures of guanine-specific ribonucleases and a guanine-preferential ribonuclease. Cleavage of oligoinosinic acids and poly I.
    Watanabe H; Ando E; Ohgi K; Irie M
    J Biochem; 1985 Nov; 98(5):1239-45. PubMed ID: 3936847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The restriction in ribonuclease T2 catalysed hydrolysis of oligoribonucleotides after kethoxalation of guanine bases.
    Avdonina TA; Kisselev LL
    Mol Biol Rep; 1974 Feb; 1(5):283-7. PubMed ID: 4607236
    [No Abstract]   [Full Text] [Related]  

  • 10. [Addressed enzymatic fragmentation of RNA molecules].
    Meteleb VG; Stepanova OB; Chichkova NV; Smirnov VD; Rodionova NP
    Mol Biol (Mosk); 1980; 14(1):200-11. PubMed ID: 6262632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-selective artificial ribonucleases.
    Komiyama M; Sumaoka J; Kuzuya A; Yamamoto Y
    Methods Enzymol; 2001; 341():455-68. PubMed ID: 11582798
    [No Abstract]   [Full Text] [Related]  

  • 12. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity.
    Perreault JP; Wu TF; Cousineau B; Ogilvie KK; Cedergren R
    Nature; 1990 Apr; 344(6266):565-7. PubMed ID: 2181322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of a synthetic precistronic region with 70S ribosomes is enhanced by an intact initiation triplet and a sequence complementary to the 3'-terminus of 16S rRNA.
    Neilson T; Kofoid EC; Ganoza MC
    Nucleic Acids Symp Ser; 1980; (7):313-23. PubMed ID: 7019858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Action of brain alkaline RNase on various RNAs and synthetic polyribonucleotides].
    Aksenova LN; Nechaeva GA
    Ukr Biokhim Zh; 1972; 44(3):312-5. PubMed ID: 4575747
    [No Abstract]   [Full Text] [Related]  

  • 15. Efficient and selective cleavage of RNA oligonucleotides by calix[4]arene-based synthetic metallonucleases.
    Cacciapaglia R; Casnati A; Mandolini L; Peracchi A; Reinhoudt DN; Salvio R; Sartori A; Ungaro R
    J Am Chem Soc; 2007 Oct; 129(41):12512-20. PubMed ID: 17880217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of RNase Sa2 complexes with mononucleotides--new aspects of catalytic reaction and substrate recognition.
    Bauerová-Hlinková V; Dvorský R; Perecko D; Povazanec F; Sevcík J
    FEBS J; 2009 Aug; 276(15):4156-68. PubMed ID: 19558492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid cataloging of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies.
    Stackebrandt E; Ludwig W; Schleifer KH; Gross HJ
    J Mol Evol; 1981; 17(4):227-36. PubMed ID: 6790718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically modified oligonucleotides with efficient RNase H response.
    Vester B; Boel AM; Lobedanz S; Babu BR; Raunkjaer M; Lindegaard D; Raunak ; Hrdlicka PJ; Højland T; Sharma PK; Kumar S; Nielsen P; Wengel J
    Bioorg Med Chem Lett; 2008 Apr; 18(7):2296-300. PubMed ID: 18356048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetical and biochemical evidence that a novel dinucleoside polyphosphate coordinates salvage and de novo nucleotide biosynthetic pathways in mammalian cells.
    Goh SH; Léjohn HB
    Biochem Biophys Res Commun; 1977 Jan; 74(1):256-64. PubMed ID: 836283
    [No Abstract]   [Full Text] [Related]  

  • 20. [Complementary addressed alkylation of ribosomal RNA with alkylating derivatives of oligonucleotides].
    Grineva NI; Karpova GG
    Mol Biol; 1974; 8(6):832-44. PubMed ID: 4469587
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.