These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 623862)

  • 1. Experimental evidence for the role of cross-relaxation in proton nuclear magnetic resonance spin lattice relaxation time measurements in proteins.
    Sykes BD; Hull WE; Snyder GH
    Biophys J; 1978 Feb; 21(2):137-46. PubMed ID: 623862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H and 13C NMR relaxation studies of molecular dynamics of the thyroid hormones thyroxine, 3,5,3'-triiodothyronine, and 3,5-diiodothyronine.
    Duggan BM; Craik DJ
    J Med Chem; 1996 Sep; 39(20):4007-16. PubMed ID: 8831766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton NMR T1, T2, and T1 rho relaxation studies of native and reconstituted sarcoplasmic reticulum and phospholipid vesicles.
    Deese AJ; Dratz EA; Hymel L; Fleischer S
    Biophys J; 1982 Jan; 37(1):207-16. PubMed ID: 6459803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of water proton NMR spin-lattice relaxation time in the rotating frame (T1p) for studying motions in solutions of giant macro-molecules and supramolecular particles (T2 virus).
    James TL
    Physiol Chem Phys; 1977; 9(2):161-6. PubMed ID: 601108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular theory of field-dependent proton spin-lattice relaxation in tissue.
    Halle B
    Magn Reson Med; 2006 Jul; 56(1):60-72. PubMed ID: 16732594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton longitudinal relaxation investigation of histidyl residues in human normal adult hemoglobin.
    Russu IM; Ho C
    Biophys J; 1982 Aug; 39(2):203-10. PubMed ID: 6288133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance of water protons in fresh human blood plasma.
    Ghosh BK
    Physiol Chem Phys Med NMR; 1989; 21(4):301-5. PubMed ID: 2562232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-metal distance determination in cobalt(II) stellacyanin by 1H nuclear magnetic resonance relaxation measurements including Curie-spin effects: a proposed structure of the metal-binding region.
    Dahlin S; Reinhammar B; Angström J
    Biochemistry; 1989 Sep; 28(18):7224-33. PubMed ID: 2554966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome.
    Llinás M; Klein MP; Wüthrich K
    Biophys J; 1978 Dec; 24(3):849-62. PubMed ID: 737289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 31P NMR relaxation studies of the activation of the coenzyme phosphate of glycogen phosphorylase. The role of motion of the bound phosphate.
    Withers SG; Madsen NB; Sykes BD
    Biophys J; 1985 Dec; 48(6):1019-26. PubMed ID: 3937556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H-19F spin-lattice relaxation spectroscopy: proton tunnelling in the hydrogen bond studied by field-cycling NMR.
    Noble DL; Aibout A; Horsewill AJ
    J Magn Reson; 2009 Dec; 201(2):157-64. PubMed ID: 19783187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?
    Bottomley PA; Hardy CJ; Argersinger RE; Allen-Moore G
    Med Phys; 1987; 14(1):1-37. PubMed ID: 3031439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex mechanism of relaxation in solid chloroxylenol (antibacterial/antifungal agent) studied by ¹H NMR spectroscopy and density functional theory calculations.
    Latosińska JN; Latosińska M; Tomczak MA; Medycki W
    J Phys Chem A; 2014 Mar; 118(12):2209-19. PubMed ID: 24628024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of glass-forming di-n-butyl phthalate as studied by NMR.
    Szcześniak E; Głowinkowski S; Suchański W; Jurga S
    Solid State Nucl Magn Reson; 1997 Apr; 8(2):73-9. PubMed ID: 9203281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proton spin-lattice relaxation rate study of methyl and t-butyl group reorientation in the solid state.
    Popa LC; Rheingold AL; Beckmann PA
    Solid State Nucl Magn Reson; 2010 Jul; 38(1):31-5. PubMed ID: 20605083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-proton nuclear magnetic relaxation in heterogeneous systems: hydrated lysozyme results.
    Lester CC; Bryant RG
    Magn Reson Med; 1991 Nov; 22(1):143-53. PubMed ID: 1665892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles of nuclear magnetic resonance.
    Koutcher JA; Burt CT
    J Nucl Med; 1984 Jan; 25(1):101-11. PubMed ID: 6726415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton dynamics at low and high temperatures in a novel ferroelectric diammonium hypodiphosphate (NH4)2H2P2O6 (ADhP) as studied by 1H spin-lattice relaxation time and second moment of NMR line.
    Medycki W; Latanowicz L; Szklarz P; Jakubas R
    J Magn Reson; 2013 Jun; 231():54-60. PubMed ID: 23584536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobility of individual 5-fluorouridine residues in 5-fluorouracil-substituted Escherichia coli valine transfer RNA. A 19F nuclear magnetic resonance relaxation study.
    Hardin CC; Horowitz J
    J Mol Biol; 1987 Oct; 197(3):555-69. PubMed ID: 2450204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved discrimination of normal and malignant tissue using 1H NMR relaxation time measurements at 2.18 MHz.
    Martino AF; Damadian R
    Physiol Chem Phys Med NMR; 1984; 16(1):49-55. PubMed ID: 6541347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.