These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 623905)

  • 1. Metabolic dependence of protein arrangement in human erythrocyte membranes. I. Analysis of spectrin-rich complexes in ATP-depleted red cells.
    Palek J; Liu SC; Snyder LM
    Blood; 1978 Mar; 51(3):385-95. PubMed ID: 623905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosslinking of the nearest membrane protein neighbors in ATP depleted, calcium enriched and irreversibly sickled red cells.
    Palek J; Liu SC; Liu PA
    Prog Clin Biol Res; 1978; 20():75-91. PubMed ID: 26062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythrocyte membrane proteins in hereditary glucosephosphate isomerase deficiency.
    Coetzer T; Zail SS
    J Clin Invest; 1979 Apr; 63(4):552-61. PubMed ID: 438320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red-cell-membrane polypeptide aggregates in glucose-6-phosphate dehydrogenase mutants with chronic hemolytic disease. A clue to the mechanism of hemolysis.
    Johnson GJ; Allen DW; Cadman S; Fairbanks VF; White JG; Lampkin BC; Kaplan ME
    N Engl J Med; 1979 Sep; 301(10):522-7. PubMed ID: 460305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous, reversible protein cross-linking in the human erythrocyte membrane. Temperature and pH dependence.
    Liu SC; Fairbanks G; Palek J
    Biochemistry; 1977 Sep; 16(18):4066-74. PubMed ID: 20929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Protein changes of the erythrocyte membrane during blood preservation].
    Stibenz D; Brox D; Geyer G
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1980; 107(3):459-71. PubMed ID: 6159283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrin extractability from erythrocyte in Duchenne muscular dystrophies and the effect of proteases on erythrocyte ghosts.
    Tsuchiya Y; Sugita H; Ishiura S; Imahori K
    Clin Chim Acta; 1981 Feb; 109(3):285-93. PubMed ID: 6452973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification by peptide analysis of the spectrin-binding protein in human erythrocytes.
    Luna EJ; Kidd GH; Branton D
    J Biol Chem; 1979 Apr; 254(7):2526-32. PubMed ID: 429298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes.
    Bennett V; Stenbuck PJ
    Nature; 1979 Aug; 280(5722):468-73. PubMed ID: 379653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The incorporation of 32 P into spectrin aggregates following incubation of erythrocytes in 32 P-labelled inorganic phosphate.
    Dunbar JC; Ralston GB
    Biochim Biophys Acta; 1978 Jul; 510(2):283-91. PubMed ID: 667046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS; Sawyer WH; Howlett GJ; Wiley JS
    Biochem J; 1982 Feb; 201(2):259-66. PubMed ID: 7082289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that spectrin binds to macromolecular complexes on the inner surface of the red cell membrane.
    Litman D; Hsu DJ; Marchesi VT
    J Cell Sci; 1980 Apr; 42():1-22. PubMed ID: 7400228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of procaine HCLl on ATP: calcium-dependent alterations in red cell shape and deformability.
    Palek J; Liu A; Liu D; Snyder LM; Fortier NL; Njoku G; Kiernan F; Funk D; Crusberg T
    Blood; 1977 Jul; 50(1):155-64. PubMed ID: 326314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation and dephosphorylation of spectrin.
    Fairbanks G; Avruch J; Dino JE; Patel VP
    J Supramol Struct; 1978; 9(1):97-112. PubMed ID: 32438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of decreased erythrocyte deformability and survival in glucose 6-phosphate dehydrogenase mutants.
    Flynn TP; Johnson GJ; Allen DW
    Prog Clin Biol Res; 1981; 56():231-49. PubMed ID: 7330011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane protein complexes in GSH-depleted red cells.
    Coetzer T; Zail S
    Blood; 1980 Aug; 56(2):159-67. PubMed ID: 7397373
    [No Abstract]   [Full Text] [Related]  

  • 18. Chloride permeability in human red cells: influence of membrane protein rearrangement resulting from ATP depletion and calcium accumulation.
    Motais R; Baroin A; Baldy S
    J Membr Biol; 1981; 62(3):195-206. PubMed ID: 6799647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic dependence of red cell deformability.
    Weed RI; LaCelle PL; Merrill EW
    J Clin Invest; 1969 May; 48(5):795-809. PubMed ID: 4388591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The abnormal phosphorylation of spectrin in human hereditary spherocytosis.
    Thompson S; Maddy AH
    Biochim Biophys Acta; 1981 Nov; 649(1):31-7. PubMed ID: 6272858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.