These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 6239774)

  • 21. Role of 3-methyladenine-DNA glycosylase in host-cell reactivation of methylated T7 bacteriophage.
    Mamet-Bratley MD; Karska-Wysocki B
    Biochim Biophys Acta; 1982 Jul; 698(1):29-34. PubMed ID: 7052130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of the SOS system in a dam-3 mutant: a diagnostic strain for chemicals causing DNA mismatches.
    Quillardet P; Hofnung M
    Mutat Res; 1987 Mar; 177(1):17-26. PubMed ID: 3029581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amplified expression of the tag+ and alkA+ genes in Escherichia coli: identification of gene products and effects on alkylation resistance.
    Kaasen I; Evensen G; Seeberg E
    J Bacteriol; 1986 Nov; 168(2):642-7. PubMed ID: 3536857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Different efficiencies of the Tag and AlkA DNA glycosylases from Escherichia coli in the removal of 3-methyladenine from single-stranded DNA.
    Bjelland S; Seeberg E
    FEBS Lett; 1996 Nov; 397(1):127-9. PubMed ID: 8941728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation.
    Huisman O; D'Ari R; Gottesman S
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4490-4. PubMed ID: 6087326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine.
    O'Connor TR; Laval J
    Biochem Biophys Res Commun; 1991 May; 176(3):1170-7. PubMed ID: 1645538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA glycosylase activities for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli.
    Bjelland S; Birkeland NK; Benneche T; Volden G; Seeberg E
    J Biol Chem; 1994 Dec; 269(48):30489-95. PubMed ID: 7982966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene.
    Berdal KG; Bjørås M; Bjelland S; Seeberg E
    EMBO J; 1990 Dec; 9(13):4563-8. PubMed ID: 2265619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro host cell reactivation of alkylated bacteriophage T7 deoxyribonucleic acid by repair-deficient strains of Escherichia coli.
    Dodson LA; Masker WE
    J Bacteriol; 1981 Sep; 147(3):720-7. PubMed ID: 7024247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Survival and SOS induction in cisplatin-treated Escherichia coli deficient in Pol II, RecBCD and RecFOR functions.
    Bhattacharya R; Beck DJ
    DNA Repair (Amst); 2002 Nov; 1(11):955-66. PubMed ID: 12531023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of suppressors of SOS-mediated filamentation on sfiA operon expression in Escherichia coli.
    Huisman O; D'Ari R
    J Bacteriol; 1983 Jan; 153(1):169-75. PubMed ID: 6336731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and expression of the alkA gene of Escherichia coli involved in adaptive response to alkylating agents.
    Nakabeppu Y; Miyata T; Kondo H; Iwanaga S; Sekiguchi M
    J Biol Chem; 1984 Nov; 259(22):13730-6. PubMed ID: 6094528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and characterization of a mouse 3-methyladenine/7-methyl-guanine/3-methylguanine DNA glycosylase cDNA whose gene maps to chromosome 11.
    Engelward BP; Boosalis MS; Chen BJ; Deng Z; Siciliano MJ; Samson LD
    Carcinogenesis; 1993 Feb; 14(2):175-81. PubMed ID: 8435858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release of chloroethyl ethyl sulfide-modified DNA bases by bacterial 3-methyladenine-DNA glycosylases I and II.
    Habraken Y; Ludlum DB
    Carcinogenesis; 1989 Mar; 10(3):489-92. PubMed ID: 2647317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new member of the endonuclease III family of DNA repair enzymes that removes methylated purines from DNA.
    Begley TJ; Haas BJ; Noel J; Shekhtman A; Williams WA; Cunningham RP
    Curr Biol; 1999 Jun; 9(12):653-6. PubMed ID: 10375529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ability of various alkylating agents to induce adaptive and SOS responses: a study with lacZ fusion.
    Otsuka M; Nakabeppu Y; Sekiguchi M
    Mutat Res; 1985 Sep; 146(2):149-54. PubMed ID: 2993877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excision of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli.
    Bjelland S; Bjørås M; Seeberg E
    Nucleic Acids Res; 1993 May; 21(9):2045-9. PubMed ID: 8502545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Induction of the SOS response by hydrogen peroxide in various Escherichia coli mutants with altered protection against oxidative DNA damage.
    Goerlich O; Quillardet P; Hofnung M
    J Bacteriol; 1989 Nov; 171(11):6141-7. PubMed ID: 2681154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Molecular mechanisms of the adaptive response to alkylating agents].
    Hofnung M
    Biochimie; 1985; 67(10-11):IX-XIV. PubMed ID: 3907713
    [No Abstract]   [Full Text] [Related]  

  • 40. Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli.
    Posnick LM; Samson LD
    J Bacteriol; 1999 Nov; 181(21):6763-71. PubMed ID: 10542179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.