BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6239799)

  • 1. Physiological cost index of walking for normal children and its use as an indicator of physical handicap.
    Butler P; Engelbrecht M; Major RE; Tait JH; Stallard J; Patrick JH
    Dev Med Child Neurol; 1984 Oct; 26(5):607-12. PubMed ID: 6239799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of the physiological cost index as an outcome measure for the assessment of energy expenditure during walking.
    Ijzerman MJ; Nene AV
    Arch Phys Med Rehabil; 2002 Dec; 83(12):1777-82. PubMed ID: 12474186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Locomotory Index in diplegic and hemiplegic children: the effects of age and speed on the energy cost of walking.
    Marconi V; Carraro E; Trevisi E; Capelli C; Martinuzzi A; Zamparo P
    Eur J Phys Rehabil Med; 2012 Sep; 48(3):403-12. PubMed ID: 22820823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High- or low- technology measurements of energy expenditure in clinical gait analysis?
    Boyd R; Fatone S; Rodda J; Olesch C; Starr R; Cullis E; Gallagher D; Carlin JB; Nattrass GR; Graham K
    Dev Med Child Neurol; 1999 Oct; 41(10):676-82. PubMed ID: 10587044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic gait and symmetry measures for primary school-aged children and young adults whilst walking barefoot and with shoes.
    Lythgo N; Wilson C; Galea M
    Gait Posture; 2009 Nov; 30(4):502-6. PubMed ID: 19692245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Differences Between Shod and Barefoot Walking in Children.
    Shultz SP; Houltham SD; Kung SM; Hume P; Fink PW
    Int J Sports Med; 2016 May; 37(5):401-4. PubMed ID: 26837929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological cost index in cerebral palsy: its role in evaluating the efficiency of ambulation.
    Raja K; Joseph B; Benjamin S; Minocha V; Rana B
    J Pediatr Orthop; 2007 Mar; 27(2):130-6. PubMed ID: 17314635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of Physiological Cost Index as an Energy Expenditure Index using MacGregor's Equation.
    Rana BS; Pun M
    JNMA J Nepal Med Assoc; 2015; 53(199):174-9. PubMed ID: 27549500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability of energy cost calculations in children with cerebral palsy, cystic fibrosis and healthy controls.
    Bratteby Tollerz LU; Olsson RM; Forslund AH; Norrlin SE
    Acta Paediatr; 2011 Dec; 100(12):1616-20. PubMed ID: 21726284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal gait characteristics of elderly individuals during backward and forward walking with shoes and barefoot.
    Elboim-Gabyzon M; Rotchild S
    Gait Posture; 2017 Feb; 52():363-366. PubMed ID: 28049108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis and comparison of two methods of using heart rate to represent energy expenditure during walking.
    Karimi MT
    Work; 2015; 51(4):799-805. PubMed ID: 24594537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Barefoot Walking and Shod Walking Between Children with and Without Flat Feet.
    Chen JP; Chung MJ; Wu CY; Cheng KW; Wang MJ
    J Am Podiatr Med Assoc; 2015 May; 105(3):218-25. PubMed ID: 26146967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy cost of walking in normal children and teenagers.
    Waters RL; Hislop HJ; Thomas L; Campbell J
    Dev Med Child Neurol; 1983 Apr; 25(2):184-8. PubMed ID: 6852382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry.
    Xu Y; Hou Q; Wang C; Simpson T; Bennett B; Russell S
    Biomed Res Int; 2017; 2017():4316821. PubMed ID: 29214168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of orthoses, footwear, and walking aids on the walking ability of children and adolescents with spina bifida: A systematic review using International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) as a reference framework.
    Ivanyi B; Schoenmakers M; van Veen N; Maathuis K; Nollet F; Nederhand M
    Prosthet Orthot Int; 2015 Dec; 39(6):437-43. PubMed ID: 25107922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-speed relationship of walking: standard tables.
    Waters RL; Lunsford BR; Perry J; Byrd R
    J Orthop Res; 1988; 6(2):215-22. PubMed ID: 3343627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficacy of physiological cost index (PCI) measurement of a subject walking with an Intelligent Prosthesis.
    Chin T; Sawamura S; Fujita H; Nakajima S; Ojima I; Oyabu H; Nagakura Y; Otsuka H; Nakagawa A
    Prosthet Orthot Int; 1999 Apr; 23(1):45-9. PubMed ID: 10355642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of energy cost by the physiological cost index in walking after stroke.
    Danielsson A; Willén C; Sunnerhagen KS
    Arch Phys Med Rehabil; 2007 Oct; 88(10):1298-303. PubMed ID: 17908572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of load carriage and footwear on spatiotemporal parameters, kinematics, and metabolic cost of walking.
    Dames KD; Smith JD
    Gait Posture; 2015 Jul; 42(2):122-6. PubMed ID: 25985924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy cost index as an estimate of energy expenditure of cerebral-palsied children during assisted ambulation.
    Rose J; Medeiros JM; Parker R
    Dev Med Child Neurol; 1985 Aug; 27(4):485-90. PubMed ID: 4029518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.