These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6240399)

  • 1. Haemodynamics and durability of mitral bioprostheses--an in vitro study.
    Gabbay S; Bortolotti U; Wasserman F; Factor SM
    Eur Heart J; 1984 Oct; 5 Suppl D():65-71. PubMed ID: 6240399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro hydrodynamic comparison of mitral valve bioprostheses.
    Gabbay S; McQueen DM; Yellin EL; Frater RW
    Circulation; 1979 Aug; 60(2 Pt 2):62-70. PubMed ID: 445776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue-induced failure of the Ionescu-Shiley pericardial xenograft in the mitral position. In vivo and in vitro correlation and a proposed classification.
    Gabbay S; Bortolotti U; Wasserman F; Factor S; Strom J; Frater RW
    J Thorac Cardiovasc Surg; 1984 Jun; 87(6):836-44. PubMed ID: 6727407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive assessment by Doppler ultrasound of 155 patients with bioprosthetic valves: a comparison of the Wessex porcine, low profile Ionescu-Shiley, and Hancock pericardial bioprostheses.
    Simpson IA; Reece IJ; Houston AB; Hutton I; Wheatley DJ; Cobbe SM
    Br Heart J; 1986 Jul; 56(1):83-8. PubMed ID: 3524634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rest and exercise hemodynamics following aortic valve replacement. A comparison between 19 and 21 mm Ionescu-Shiley pericardial and Carpentier-Edwards porcine valves.
    Bove EL; Marvasti MA; Potts JL; Reger MJ; Zamora JL; Eich RH; Parker FB
    J Thorac Cardiovasc Surg; 1985 Nov; 90(5):750-5. PubMed ID: 4058047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New generation tissue valves. Their in vitro function in the mitral position.
    Walker DK; Scotten LN; Brownlee RT
    J Thorac Cardiovasc Surg; 1984 Oct; 88(4):573-82. PubMed ID: 6482489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Durability of prosthetic heart valves.
    Clark RE; Swanson WM; Kardos JL; Hagen RW; Beauchamp RA
    Ann Thorac Surg; 1978 Oct; 26(4):323-35. PubMed ID: 753145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vitro and clinical evaluation of cardiac valve substitutes.
    Kawazoe K; Umezu M; Ohara K; Kaku K; Tomino T; Fujita T; Manabe H
    Jpn Circ J; 1984 Oct; 48(10):1123-9. PubMed ID: 6492377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Durability of Mitral Valve Bioprostheses: A Meta-Analysis of Long-Term Follow-up Studies.
    Malvindi PG; Mastro F; Kowalewski M; Ringold M; Margari V; Suwalski P; Speziale G; Paparella D
    Ann Thorac Surg; 2020 Feb; 109(2):603-611. PubMed ID: 31472130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do heart valve bioprostheses degenerate for metabolic or mechanical reasons?
    Gabbay S; Kadam P; Factor S; Cheung TK
    J Thorac Cardiovasc Surg; 1988 Feb; 95(2):208-15. PubMed ID: 2963176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porcine valves: Hancock and Carpentier-Edwards aortic prostheses.
    Fann JI; Miller DC
    Semin Thorac Cardiovasc Surg; 1996 Jul; 8(3):259-68. PubMed ID: 8843517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term follow-up of the Ionescu-Shiley mitral pericardial xenograft.
    Gabbay S; Bortolotti U; Wasserman F; Tindel N; Factor SM; Frater RW
    J Thorac Cardiovasc Surg; 1984 Nov; 88(5 Pt 1):758-63. PubMed ID: 6492841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The behavior of pericardial versus porcine valve xenografts in the growing sheep model.
    Gallo I; Nistal F; Artiñano E; Fernández D; Cayón R; Carrión M; García-Martínez V
    J Thorac Cardiovasc Surg; 1987 Feb; 93(2):281-90. PubMed ID: 3807402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro assessment of mitral valve prostheses.
    Walker DK; Scotten LN; Modi VJ; Brownlee RT
    J Thorac Cardiovasc Surg; 1980 May; 79(5):680-8. PubMed ID: 7366235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Hemodynamic evaluation of the Carpentier-Edwards porcine bioprosthesis and the Hancock pericardial bioprosthesis in aortic position].
    Cohen-Solal A; Leroy G; Hittinger L; Fernandez F; Gay J; Gourgon R
    Arch Mal Coeur Vaiss; 1986 Mar; 79(3):346-54. PubMed ID: 3087318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small aortic annulus: the hydrodynamic performances of 5 commercially available tissue valves.
    Gerosa G; Tarzia V; Rizzoli G; Bottio T
    J Thorac Cardiovasc Surg; 2006 May; 131(5):1058-64. PubMed ID: 16678590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro hydrodynamic comparison of mitral valve prostheses at high flow rates.
    Gabbay S; McQueen DM; Yellin EL; Becker RM; Frater RW
    J Thorac Cardiovasc Surg; 1978 Dec; 76(6):771-87. PubMed ID: 713584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphologic study of Carpentier-Edwards pericardial xenografts in the mitral position exhibiting primary tissue failure in adults in comparison with Ionescu-Shiley pericardial xenografts.
    Machida H; Ishibashi-Ueda H; Nakano K; Sasako Y; Kobayashi J; Bando K; Minatoya K; Imamura H; Kitamura S
    J Thorac Cardiovasc Surg; 2001 Oct; 122(4):649-55. PubMed ID: 11581594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic comparison of biological prostheses during progressive valve calcification in a simulated exercise situation. An in vitro study.
    Bakhtiary F; Dzemali O; Steinseiffer U; Schmitz C; Glasmacher B; Moritz A; Kleine P
    Eur J Cardiothorac Surg; 2008 Nov; 34(5):960-3. PubMed ID: 18774723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Effective Orifice Areas of Mitral Prosthetic Heart Valves: An In-Vitro Study.
    Evin M; Magne J; Grieve SM; Rieu R; Pibarot P
    J Heart Valve Dis; 2017 Nov; 26(6):677-687. PubMed ID: 30207118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.