BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6240985)

  • 1. [Glucose 1,6-diphosphate in the erythrocytes of various species of mammal].
    Accorsi A; Fazi A; Chiarantini L; Piacentini MP; Malavolta M
    Boll Soc Ital Biol Sper; 1984 Sep; 60(9):1663-5. PubMed ID: 6240985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-1,6-P2 synthesis, phosphoglucomutase and phosphoribomutase correlate with glucose-1,6-P2 concentration in mammals red blood cells.
    Accorsi A; Fazi A; Ninfali P; Piatti E; Palma F; Piacentini MP; Fornaini G
    Comp Biochem Physiol B; 1985; 80(4):839-42. PubMed ID: 2986904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Degradative pathways of glucose 1,6-diphosphate in human erythrocytes].
    Ninfali P; Piatti E; Palma F; Chiarantini L; Piacentini MP
    Boll Soc Ital Biol Sper; 1984 Sep; 60(9):1667-9. PubMed ID: 6240986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose 1,6-bisphosphate decline in human erythrocytes: possible involvement of phosphoglucomutase PGM2 isoenzymes.
    Ninfali P; Piatti E; Accorsi A; Palma F; Fazi A; Tozzi MG; Fornaini G
    Can J Biochem Cell Biol; 1985 Mar; 63(3):162-6. PubMed ID: 3157431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relevance of glucose 1,6-bisphosphate formation and degradation to human red blood cell metabolism.
    Fornaini G; Bossù M; Fazi A; Piatti E; Ninfali P; Palma F; Piacentini MP; Accorsi A
    Ital J Biochem; 1986; 35(5):310-5. PubMed ID: 2948936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between the age-dependent decay of glucose-1,6-bisphosphate synthesis, phosphoribomutase and phosphoglucomutase in human red cells.
    Accorsi A; Fazi A; Piatti E; Piacentini MP; Magnani M; Fornaini G
    Mech Ageing Dev; 1986 Oct; 36(2):133-41. PubMed ID: 3023765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetaldehyde influences glucose 1,6-bisphosphate level of human erythrocytes in vitro and in vivo.
    Ninfali P; Accorsi A; Palma F; Fazi A; Piatti E; Fornaini G
    Acta Haematol; 1984; 71(4):241-6. PubMed ID: 6426237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human erythrocyte phosphoglucomutase: comparison of the kinetic properties of PGM1 and PGM2 isoenzymes.
    Ninfali P; Accorsi A; Palma F; Fazi A; Piatti E; Chiarantini L; Fornaini G
    Biochimie; 1984; 66(9-10):617-23. PubMed ID: 6240990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate levels in erythrocytes with high and low 2,3-bisphosphoglycerate content during postnatal development.
    Gallego C; Carreras J
    FEBS Lett; 1989 Jul; 251(1-2):74-8. PubMed ID: 2753166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of glucose 1,6-bisphosphate synthesis in rabbit skeletal muscle.
    Piatti E; Accorsi A; Piacentini MP; Fazi A
    Comp Biochem Physiol B; 1991; 100(1):67-71. PubMed ID: 1661660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GLUCOSE-6-PHOSPHATE AND 6-PHOSPHOGLUCONIC DEHYDROGENASE ACTIVITIES IN THE RED BLOOD CELLS OF SEVERAL ANIMAL SPECIES.
    SALVIDIO E; PANNACCIULLI I; TIZIANELLO A
    Nature; 1963 Oct; 200():372-3. PubMed ID: 14087898
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative study of red-cell enzyme polymorphism in the pika and the rabbit.
    Vergnes H; Puget A; Gouarderes C
    Anim Blood Groups Biochem Genet; 1974; 5(3):181-8. PubMed ID: 4375417
    [No Abstract]   [Full Text] [Related]  

  • 13. Behavior of animal blood in blood typing systems. Isoelectric focusing of erythrocyte acid phosphatase and phosphoglucomutase.
    Stowell LI; Thomson DG; Vintiner SK; Dick GL
    J Forensic Sci; 1989 Sep; 34(5):1095-103. PubMed ID: 2530313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoelectric points and charge-dependent separation of erythrocyte phosphoglucomutase isoenzymes (PGM1 and PGM2).
    Accorsi A; Piatti E; Fazi A; Piacentini MP; Fornaini G
    Ital J Biochem; 1987; 36(4):267-74. PubMed ID: 2962967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic variation of red cell enzyme systems in farm animals.
    McDermid EM; Agar NS; Chai CK
    Anim Blood Groups Biochem Genet; 1975; 6(3):127-74. PubMed ID: 812391
    [No Abstract]   [Full Text] [Related]  

  • 16. Red cell phosphoglucomutase (PGM)-deficiency: hereditary defect of the PGM1-locus.
    Gahr M; Schröter W
    Eur J Pediatr; 1981 Mar; 136(1):63-5. PubMed ID: 6452267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate in avian and mammalian erythroid cells.
    Carreras J; Bartrons R; Espinet C; Gallego C
    Biomed Biochim Acta; 1987; 46(2-3):S258-62. PubMed ID: 2954546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A kinetic study of the isozymes determined by the three human phosphoglucomutase loci PGM1, PGM2, and PGM3.
    Quick CB; Fisher RA; Harris H
    Eur J Biochem; 1974 Mar; 42(2):511-7. PubMed ID: 4829444
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphoglucomutase isozymes of red cells in Mus musculus: additional polymorphism at PGM-l compared by two electrophoretic systems.
    Miner GD; Wolfe HG
    Biochem Genet; 1972 Dec; 7(3):247-52. PubMed ID: 4646763
    [No Abstract]   [Full Text] [Related]  

  • 20. [Methods of demonstrating acid phosphatase, phosphoglucomutase and glucosephosphate dehydrogenase isoenzymes in animals].
    Berg K; Schwarzfischer F; Wischerath H
    Zentralbl Veterinarmed A; 1975 Jun; 22(5):436-9. PubMed ID: 807066
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.