These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6241843)

  • 1. Autoregulation of the electrogenic sodium pump.
    Ayrapetyan SN; Suleymanyan MA; Saghyan AA; Dadalyan SS
    Cell Mol Neurobiol; 1984 Dec; 4(4):367-83. PubMed ID: 6241843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Relation between sodium pump activity and the osmotic pressure of the medium].
    Suleĭmanian MA; Sagiian AA; Aĭrapetian SN
    Biofizika; 1984; 29(5):822-6. PubMed ID: 6095927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further study of the correlation between Na-pump activity and membrane chemosensitivity.
    Ayrapetyan SN; Arvanov VL; Maginyan SB; Azatyan KV
    Cell Mol Neurobiol; 1985 Sep; 5(3):231-43. PubMed ID: 2415257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The membrane properties of the smooth muscle of the guinea-pig portal vein in isotonic and hypertonic solutions.
    Kuriyama H; Oshima K; Sakamoto Y
    J Physiol; 1971 Aug; 217(1):179-99. PubMed ID: 5571918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electrogenic sodium-potassium pump of mouse pancreatic B-cells.
    Henquin JC; Meissner HP
    J Physiol; 1982 Nov; 332():529-52. PubMed ID: 6759632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ouabain on tone, membrane potential and sodium efflux compared with [3H]ouabain binding in rat resistance vessels.
    Aalkjaer C; Mulvany MJ
    J Physiol; 1985 May; 362():215-31. PubMed ID: 2410600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease.
    Cheung RK; Grinstein S; Dosch HM; Gelfand EW
    J Cell Physiol; 1982 Aug; 112(2):189-96. PubMed ID: 6288741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane ion movements elicited by sodium pump inhibition in Helix aspersa neurons.
    Alvarez-Leefmans FJ; Cruzblanca H; Gamiño SM; Altamirano J; Nani A; Reuss L
    J Neurophysiol; 1994 May; 71(5):1787-96. PubMed ID: 7520481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell volume changes upon sodium pump inhibition in Helix aspersa neurones.
    Alvarez-Leefmans FJ; Gamiño SM; Reuss L
    J Physiol; 1992 Dec; 458():603-19. PubMed ID: 1338793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anoxia and ATP depletion on the membrane potential and permeability of dog liver.
    Lambotte L
    J Physiol; 1977 Jul; 269(1):53-76. PubMed ID: 894569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell water content in carp kidney tissue slices as influenced by various osmotic agents.
    Benes I; Janácek K; Tauchová R
    Physiol Bohemoslov; 1983; 32(4):328-33. PubMed ID: 6622558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the distribution of Na+-pump sites in the frog skin.
    Mills JW; DiBona DR
    J Cell Biol; 1977 Dec; 75(3):968-73. PubMed ID: 144738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations.
    Rang HP; Ritchie JM
    J Physiol; 1968 May; 196(1):183-221. PubMed ID: 5653884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The number of sodium ion pumping sites in skeletal muscle and its modification by insulin.
    Erlij D; Grinstein S
    J Physiol; 1976 Jul; 259(1):13-31. PubMed ID: 182957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An estimate of sodium-potassium pump activity and the number of pump sites in the smooth muscle of the guinea-pig taenia coli, using (3H)ouabain.
    Brading AF; Widdicombe JH
    J Physiol; 1974 Apr; 238(2):235-49. PubMed ID: 4840873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The uptake and hydrolysis of p-nitrophenyl phosphate by red cells in relation to ATP hydrolysis by the sodium pump.
    Cotterrell D; Whittam R
    J Physiol; 1972 Jun; 223(3):773-802. PubMed ID: 4339904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of the sodium pump by azide and high internal sodium: changes in the number of pumping sites and turnover rate.
    Erlij D; Grinstein S
    J Physiol; 1976 Jul; 259(1):33-45. PubMed ID: 1085358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of short-chain fatty acids on the neuronal membrane functions of Helix pomatia. III. 22Na efflux from the cells.
    Saghyan AA; Dadalian SS; Takenaka T; Suleymanian MA; Ayrapetyan SN
    Cell Mol Neurobiol; 1986 Dec; 6(4):397-405. PubMed ID: 3829102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogenic sodium pump in smooth muscle cells of the guinea-pig's taenia coli.
    Casteels R; Droogmans G; Hendrickx H
    J Physiol; 1971 Sep; 217(2):297-313. PubMed ID: 5097601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of sodium pump activity in the hyperpolarization and in subsequent depolarization of smooth muscle in response to stimulation of post-synaptic alpha 1-adrenoceptors.
    Török TL; Vizi ES
    Acta Physiol Acad Sci Hung; 1980; 55(3):233-50. PubMed ID: 6258387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.