These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6242153)

  • 1. A link between transport and plasma membrane redox system(s) in carrot cells.
    Misra PC; Craig TA; Crane FL
    J Bioenerg Biomembr; 1984 Apr; 16(2):143-52. PubMed ID: 6242153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evidence for the presence of two external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria.
    Roberts TH; Fredlund KM; Møller IM
    FEBS Lett; 1995 Oct; 373(3):307-9. PubMed ID: 7589489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosum) mitochondria.
    Moore AL; Akerman KE
    Biochem Biophys Res Commun; 1982 Nov; 109(2):513-7. PubMed ID: 7181932
    [No Abstract]   [Full Text] [Related]  

  • 4. Pyridine nucleotide oxidation by a plasma membrane fraction from red beet (Beta vulgaris L.) storage tissue.
    Giannini JL; Briskin DP
    Arch Biochem Biophys; 1988 Feb; 260(2):653-60. PubMed ID: 2893588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanadate-stimulated NADH oxidation in plasma membrane.
    Ramasarma T; MacKellar WC; Crane FL
    Biochim Biophys Acta; 1981 Aug; 646(1):88-98. PubMed ID: 6912071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitroreductase activity of NADH dehydrogenase of the respiratory redox chain.
    Smyth GE; Orsi BA
    Biochem J; 1989 Feb; 257(3):859-63. PubMed ID: 2494990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dichlorophenolindophenol, dichlorophenolindophenol-sulfonate, and cytochrome c on redox capacity and simultaneous net H+/K+ fluxes in aeroponically grown seedling roots of sunflower (Helianthus annuus L.): new evidence for a plasma membrane CN(-)-resistant redox chain.
    Garrido I; Espinosa F; Alvarez-Tinaut MC
    Protoplasma; 2001; 217(1-3):56-64. PubMed ID: 11732339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for an alternative and non-phosphorylating pathway for NADH reoxidation in a yeast strain resistant to glucose repression.
    Camougrand NM; Caubet RB; Guerin MG
    Eur J Biochem; 1983 Sep; 135(2):367-71. PubMed ID: 6309524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in intracellular redox and energy status during induced transplasma membrane electron transport in Cuscuta protoplasts.
    Revis S; Misra PC
    Biochem Biophys Res Commun; 1988 Oct; 156(2):940-6. PubMed ID: 2973317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the microsomal electron-transport system of anaerobically grown yeast. IV. Purification and characterization of NADH-cytochrome b5 reductase.
    Kubota S; Yoshida Y; Kumaoka H
    J Biochem; 1977 Jan; 81(1):187-95. PubMed ID: 14930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. I. Pre-steady-state kinetics with NADPH.
    Bakker PT; Albracht SP
    Biochim Biophys Acta; 1986 Jul; 850(3):413-22. PubMed ID: 3015206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton translocation linked to the activity of the bi-trans-membrane electron transport chain.
    Marzulli D; La Piana G; Cafagno L; Fransvea E; Lofrumento NE
    Arch Biochem Biophys; 1995 May; 319(1):36-48. PubMed ID: 7771804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for two independent pathways of electron transfer in mitochondrial NADH:Q oxidoreductase. II. Kinetics of reoxidation of the reduced enzyme.
    Albracht SP; Bakker PT
    Biochim Biophys Acta; 1986 Jul; 850(3):423-8. PubMed ID: 3015207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of NADH oxidation by pyridine derivatives.
    Ramsay RR; McKeown KA; Johnson EA; Booth RG; Singer TP
    Biochem Biophys Res Commun; 1987 Jul; 146(1):53-60. PubMed ID: 2886124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of competition between cytochrome c and anthraquinone type drugs for the reductive sites of NADH dehydrogenase.
    Tarasiuk J; Garnier-Suillerot A; Borowski E
    Biochem Pharmacol; 1989 Jul; 38(14):2285-9. PubMed ID: 2546562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD(P)H oxidation elicits anion superoxide formation in radish plasmalemma vesicles.
    Vianello A; Macrì F
    Biochim Biophys Acta; 1989 Apr; 980(2):202-8. PubMed ID: 2539193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explanation for the apparent inefficiency of reduced nicotinamide adenine dinucleotide in energizing amino acid transport in membrane vesicles.
    Hampton ML; Freese E
    J Bacteriol; 1974 May; 118(2):497-504. PubMed ID: 4364022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation.
    Miura A; Tampo Y; Yonaha M
    Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-bound redox proteins of the murine Friend virus-induced erythroleukemia cell.
    Slaughter SR; Hultquist DE
    J Cell Biol; 1979 Oct; 83(1):231-9. PubMed ID: 292645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport in the membrane of lutoids from the latex of Hevea brasiliensis.
    Moreau F; Jacob JL; Dupont J; Lance C
    Biochim Biophys Acta; 1975 Jul; 396(1):116-24. PubMed ID: 167847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.