These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 6242893)

  • 1. Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes.
    McLaughlin A; Eng WK; Vaio G; Wilson T; McLaughlin S
    J Membr Biol; 1983; 76(2):183-93. PubMed ID: 6242893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large divalent cations and electrostatic potentials adjacent to membranes. Experimental results with hexamethonium.
    Alvarez O; Brodwick M; Latorre R; McLaughlin A; McLaughlin S; Szabo G
    Biophys J; 1983 Dec; 44(3):333-42. PubMed ID: 6198001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids.
    Chung L; Kaloyanides G; McDaniel R; McLaughlin A; McLaughlin S
    Biochemistry; 1985 Jan; 24(2):442-52. PubMed ID: 3978084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of divalent cations to bilayer membranes containing phosphatidylserine.
    McLaughlin S; Mulrine N; Gresalfi T; Vaio G; McLaughlin A
    J Gen Physiol; 1981 Apr; 77(4):445-73. PubMed ID: 7241089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilayer membranes containing the ganglioside GM1: models for electrostatic potentials adjacent to biological membranes.
    McDaniel RV; McLaughlin A; Winiski AP; Eisenberg M; McLaughlin S
    Biochemistry; 1984 Sep; 23(20):4618-24. PubMed ID: 6498158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large divalent cations and electrostatic potentials adjacent to membranes. A theoretical calculation.
    Carnie S; McLaughlin S
    Biophys J; 1983 Dec; 44(3):325-32. PubMed ID: 6661491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of myocardial diffuse double-layer calcium to contractile function.
    Fintel M; Langer GA; Rohloff JC; Jung ME
    Am J Physiol; 1985 Nov; 249(5 Pt 2):H989-94. PubMed ID: 2998208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.
    Eisenberg M; Gresalfi T; Riccio T; McLaughlin S
    Biochemistry; 1979 Nov; 18(23):5213-23. PubMed ID: 115493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of calcium with gangliosides in bilayer membranes.
    McDaniel R; McLaughlin S
    Biochim Biophys Acta; 1985 Oct; 819(2):153-60. PubMed ID: 4041455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes.
    Pasquale L; Winiski A; Oliva C; Vaio G; McLaughlin S
    J Gen Physiol; 1986 Dec; 88(6):697-718. PubMed ID: 3794637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid and cell membranes in the presence of gadolinium and other ions with high affinity to lipids. 2. A dipole component of the boundary potential on membranes with different surface charge.
    Ermakov YuA ; Averbakh AZ; Arbuzova AB; Sukharev SI
    Membr Cell Biol; 1998; 12(3):411-26. PubMed ID: 10024973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divalent cation binding to phospholipids: an EPR study.
    Puskin JS
    J Membr Biol; 1977 Jun; 35(1):39-55. PubMed ID: 196084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adsorption of divalent cations to phosphatidylglycerol bilayer membranes.
    Lau A; McLaughlin A; McLaughlin S
    Biochim Biophys Acta; 1981 Jul; 645(2):279-92. PubMed ID: 7272290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.
    Peitzsch RM; Eisenberg M; Sharp KA; McLaughlin S
    Biophys J; 1995 Mar; 68(3):729-38. PubMed ID: 7756540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A test of discreteness-of-charge effects in phospholipid vesicles: measurements using paramagnetic amphiphiles.
    Hartsel SC; Cafiso DS
    Biochemistry; 1986 Dec; 25(25):8214-9. PubMed ID: 3814580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane surface-charge titration probed by gramicidin A channel conductance.
    Rostovtseva TK; Aguilella VM; Vodyanoy I; Bezrukov SM; Parsegian VA
    Biophys J; 1998 Oct; 75(4):1783-92. PubMed ID: 9746520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divalent cation-induced interaction of phospholipid vesicle and monolayer membranes.
    Ohki S; Düzgünes N
    Biochim Biophys Acta; 1979 Apr; 552(3):438-49. PubMed ID: 444512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic effects on lipid phase transitions: membrane structure and ionic environment.
    Träuble H; Eibl H
    Proc Natl Acad Sci U S A; 1974 Jan; 71(1):214-9. PubMed ID: 4521052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusion of small unilamellar liposomes with phospholipid planar bilayer membranes and large single-bilayer vesicles.
    Düzgüneş N; Ohki S
    Biochim Biophys Acta; 1981 Feb; 640(3):734-47. PubMed ID: 6163458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cations that alter surface potentials of lipid bilayers increase the calcium requirement for exocytosis in sea urchin eggs.
    McLaughlin S; Whitaker M
    J Physiol; 1988 Feb; 396():189-204. PubMed ID: 3411496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.